scholarly journals Planar Graphs under Pythagorean Fuzzy Environment

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 278 ◽  
Author(s):  
Muhammad Akram ◽  
Jawaria Dar ◽  
Adeel Farooq

Graph theory plays a substantial role in structuring and designing many problems. A number of structural designs with crossings can be found in real world scenarios. To model the vagueness and uncertainty in graphical network problems, many extensions of graph theoretical ideas are introduced. To deal with such uncertain situations, the present paper proposes the concept of Pythagorean fuzzy multigraphs and Pythagorean fuzzy planar graphs with some of their eminent characteristics by investigating Pythagorean fuzzy planarity value with strong, weak and considerable edges. A close association is developed between Pythagorean fuzzy planar and dual graphs. This paper also includes a brief discussion on non-planar Pythagorean fuzzy graphs and explores the concepts of isomorphism, weak isomorphism and co-weak isomorphism for Pythagorean fuzzy planar graphs. Moreover, it presents a problem that shows applicability of the proposed concept.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Noura Alshehri ◽  
Muhammad Akram

Graph theory has numerous applications in modern sciences and technology. Atanassov introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. Intuitionistic fuzzy set has shown advantages in handling vagueness and uncertainty compared to fuzzy set. In this paper, we apply the concept of intuitionistic fuzzy sets to multigraphs, planar graphs, and dual graphs. We introduce the notions of intuitionistic fuzzy multigraphs, intuitionistic fuzzy planar graphs, and intuitionistic fuzzy dual graphs and investigate some of their interesting properties. We also study isomorphism between intuitionistic fuzzy planar graphs.



2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaolong Shi ◽  
Saeed Kosari

The product vague graph (PVG) is one of the most significant issues in fuzzy graph theory, which has many applications in the medical sciences today. The PVG can manage the uncertainty, connected to the unpredictable and unspecified data of all real-world problems, in which fuzzy graphs (FGs) will not conceivably ensue into generating adequate results. The limitations of previous definitions in FGs have led us to present new definitions in PVGs. Domination is one of the highly remarkable areas in fuzzy graph theory that have many applications in medical and computer sciences. Therefore, in this study, we introduce distinctive concepts and properties related to domination in product vague graphs such as the edge dominating set, total dominating set, perfect dominating set, global dominating set, and edge independent set, with some examples. Finally, we propose an implementation of the concept of a dominating set in medicine that is related to the COVID-19 pandemic.



Author(s):  
Ganesh Ghorai ◽  
Kavikumar Jacob

In this chapter, the authors introduce some basic definitions related to fuzzy graphs like directed and undirected fuzzy graph, walk, path and circuit of a fuzzy graph, complete and strong fuzzy graph, bipartite fuzzy graph, degree of a vertex in fuzzy graphs, fuzzy subgraph, etc. These concepts are illustrated with some examples. The recently developed concepts like fuzzy planar graphs are discussed where the crossing of two edges are considered. Finally, the concepts of fuzzy threshold graphs and fuzzy competitions graphs are also given as a generalization of threshold and competition graphs.



Author(s):  
Mohammadesmail Nikfar

The aim of this expository article is to present recent developments in the centuries-old discussion on the interrelations between several types of domination in graphs. However, the novelty even more prominent in the newly discovered simplified presentations of several older results. The main part of this article, concerning a new domination and older one, is presented in a narrative that answers two classical questions: (i) To what extend must closing set be dominating? (ii) How strong is the assumption of domination of a closing set? In a addition, we give an overview of the results concerning domination. The problem asks how small can a subset of vertices be and contain no edges or, more generally how can small a subset of vertices be and contain other ones. Our work was as elegant as it was unexpected being a departure from the tried and true methods of this theory that had dominated the field for one fifth a century. This expository article covers all previous definitions. The inability of previous definitions in solving even one case of real-world problems due to the lack of simultaneous attentions to the worthy both of vertices and edges causing us to make the new one. The concept of domination in a variety of graphs models such as crisp, weighted and fuzzy, has been in a spotlight. We turn our attention to sets of vertices in a fuzzy graph that are so close to all vertices, in a variety of ways, and study minimum such sets and their cardinality. A natural way to introduce and motivate our subject is to view it as a real-world problem. In its most elementary form, we consider the problem of reducing waste of time in transport planning. Our goal here is to first describe the previous definitions and the results, and then to provide an overview of the flows ideas in their articles. The final outcome of this article is twofold: (i) Solving the problem of reducing waste of time in transport planning at static state; (ii) Solving and having a gentle discussions on problem of reducing waste of time in transport planning at dynamic state. Finally, we discuss the results concerning holding domination that are independent of fuzzy graphs. We close with a list of currently open problems related to this subject. Most of our exposition assumes only familiarity with basic linear algebra, polynomials, fuzzy graph theory and graph theory.



2021 ◽  
Author(s):  
Abdul Muneera ◽  
T. Nageswara Rao ◽  
R. V. N. Srinivasa ◽  
J. Venkateswara Rao

Abstract The intend of the paper is to grant the centrality of fuzzy graph (f-graph) hypothetical ideas and the uses of dominations in fuzzy graphs to different genuine circumstances in the territories of science and designing. It is seen an eminent development because of various applications in PC and correspondence, biomedical, atomic material science and science, interpersonal organizations, natural sciences and in different various regions. Interpersonal organizations are the zones where countless individuals are associated. A wireless sensor Network (WSN) remote system which comprises of spatially circulated independent sensors to screen the physical or ecological conditions, for example, pressure, temperature, sound and so forth and to communicate their data through the remote system to a fundamental area. This paper gives an audit of the employments of Fuzzy Graph theory in different sorts of fields.



Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 489 ◽  
Author(s):  
Muhammad Akram ◽  
Amna Habib  ◽  
Ali Koam 

Picture fuzzy model is a generalized structure of intuitionistic fuzzy model in the sense that it not only assigns the membership and nonmembership values in the form of orthopair ( μ , ν ) to an element, but it assigns a triplet ( μ , η , ν ) , where η denotes the neutral degree and the difference π = 1 - ( μ + η + ν ) indicates the degree of refusal. The q-rung picture fuzzy set( q -RPFS) provides a wide formal mathematical sketch in which uncertain and vague conceptual phenomenon can be precisely and rigorously studied because of its distinctive quality of vast representation space of acceptable triplets. This paper discusses some properties including edge regularity, total edge regularity and perfect edge regularity of q-rung picture fuzzy graphs (q-RPFGs). The work introduces and investigates these properties for square q-RPFGs and q-RPF line graphs. Furthermore, this study characterizes how regularity and edge regularity of q-RPFGs structurally relate. In addition, it presents the concept of ego-networks to extract knowledge from large social networks under q-rung picture fuzzy environment with algorithm.



2019 ◽  
Vol 24 (3) ◽  
pp. 73 ◽  
Author(s):  
Muhammad Akram ◽  
Sumera Naz

A complex Pythagorean fuzzy set (CPFS) is an extension of a Pythagorean fuzzy set that is used to handle the vagueness with the degrees whose ranges are enlarged from real to complex subset with unit disc. In this research study, we propose the innovative concept of complex Pythagorean fuzzy graphs (CPFGs). Further, we present the concepts of regular and edge regular graphs in a complex Pythagorean fuzzy environment. Moreover, we develop a complex Pythagorean fuzzy graph based multi-attribute decision making an approach to handling the situations in which the graphic structure of attributes is obscure. A numerical example concerning information technology improvement project selection is utilized to illustrate the availability of the developed approach.



2015 ◽  
Vol 108 (8) ◽  
pp. 626-631 ◽  
Author(s):  
Anne Quinn

An inexpensive dynamic graph theory app can be used for matrix representations, planar graphs, Platonic solids, and more.



1997 ◽  
Vol 90 (4) ◽  
pp. 328-332
Author(s):  
Anne Larson Quinn

I have always used concrete marupulatives, such as marshmallows and toothpicks, to create models for my geometry and discrete-mathematics courses. These models have come in handy when discussing volume, introducing the 4-cube, or illustrating isomorphic or bipartite graphs. However, after discovering what a dynamic geometry–software package could do for geometry teaching, which has been well documented by research (e.g., Battista and Clements [1995]), I realized that this type of technology also had much to offer for teaching graph theory in my discrete-mathematics course. Although this article discusses The Geometer's Sketchpad 3 (Jackiw 1995), any software that can draw, label, and drag figures can be substituted for Sketchpad.



Sign in / Sign up

Export Citation Format

Share Document