scholarly journals A Dilation Invariance Method and the Stability of Inhomogeneous Wave Equations

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 70 ◽  
Author(s):  
Ginkyu Choi ◽  
Soon-Mo Jung

We apply the method of a kind of dilation invariance to prove the generalized Hyers-Ulam stability of the (inhomogeneous) wave equation with a source, u t t ( x , t ) − c 2 ▵ u ( x , t ) = f ( x , t ) , for a class of real-valued functions with continuous second partial derivatives in each of spatial and the time variables.

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 324 ◽  
Author(s):  
Ginkyu Choi ◽  
Soon-Mo Jung ◽  
Jaiok Roh

In this paper, we will apply the operator method to prove the generalized Hyers-Ulam stability of the wave equation, u t t ( x , t ) − c 2 ▵ u ( x , t ) = f ( x , t ) , for a class of real-valued functions with continuous second partial derivatives. Finally, we will discuss the stability more explicitly by giving examples.


Geophysics ◽  
1991 ◽  
Vol 56 (3) ◽  
pp. 382-384
Author(s):  
A. H. Kamel

The constant‐coefficient inhomogeneous wave equation reads [Formula: see text], Eq. (1) where t is the time; x, z are Cartesian coordinates; c is the sound speed; and δ(.) is the Dirac delta source function located at the origin. The solution to the wave equation could be synthesized in terms of plane waves traveling in all directions. In several applications it is desirable to replace equation (1) by a one‐way wave equation, an equation that allows wave processes in a 180‐degree range of angles only. This idea has become a standard tool in geophysics (Berkhout, 1981; Claerbout, 1985). A “wide‐angle” one‐way wave equation is designed to be accurate over nearly the whole 180‐degree range of permitted angles. Such formulas can be systematically constructed by drawing upon the connection with the mathematical field of approximation theory (Halpern and Trefethen, 1988).


2021 ◽  
Vol 5 (1) ◽  
pp. 314-336
Author(s):  
Tristram de Piro ◽  

We clarify some arguments concerning Jefimenko’s equations, as a way of constructing solutions to Maxwell’s equations, for charge and current satisfying the continuity equation. We then isolate a condition on non-radiation in all inertial frames, which is intuitively reasonable for the stability of an atomic system, and prove that the condition is equivalent to the charge and current satisfying certain relations, including the wave equations. Finally, we prove that with these relations, the energy in the electromagnetic field is quantised and displays the properties of the Balmer series.


1989 ◽  
Vol 209 ◽  
pp. 385-403 ◽  
Author(s):  
H. M. Atassi ◽  
J. Grzedzinski

For small-amplitude vortical and entropic unsteady disturbances of potential flows, Goldstein proposed a partial splitting of the velocity field into a vortical part u(I) that is a known function of the imposed upstream disturbance and a potential part ∇ϕ satisfying a linear inhomogeneous wave equation with a dipole-type source term. The present paper deals with flows around bodies with a stagnation point. It is shown that for such flows u(I) becomes singular along the entire body surface and its wake and as a result ∇ϕ will also be singular along the entire body surface. The paper proposes a modified splitting of the velocity field into a vortical part u(R) that has zero streamwise and normal components along the body surface, an entropy-dependent part and a regular part ∇ϕ* that satisfies a linear inhomogeneous wave equation with a modified source term.For periodic disturbances, explicit expressions for u(R) are given for three-dimensional flows past a single obstacle and for two-dimensional mean flows past a linear cascade. For weakly sheared flows, it is shown that if the mean flow has only a finite number of isolated stagnation points, u(R) will be finite along the body surface. On the other hand, if the mean flow has a stagnation line along the body surface such as in two-dimensional flows then the component of u(R) in this direction will have a logarithmic singularity.For incompressible flows, the boundary-value problem for ϕ* is formulated in terms of an integral equation of the Fredholm type. The theory is applied to a typical bluff body. Detailed calculations are carried out to show the velocity and pressure fields in response to incident harmonic disturbances.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. T1-T13 ◽  
Author(s):  
Ning Wang ◽  
Tieyuan Zhu ◽  
Hui Zhou ◽  
Hanming Chen ◽  
Xuebin Zhao ◽  
...  

The spatial derivatives in decoupled fractional Laplacian (DFL) viscoacoustic and viscoelastic wave equations are the mixed-domain Laplacian operators. Using the approximation of the mixed-domain operators, the spatial derivatives can be calculated by using the Fourier pseudospectral (PS) method with barely spatial numerical dispersions, whereas the time derivative is often computed with the finite-difference (FD) method in second-order accuracy (referred to as the FD-PS scheme). The time-stepping errors caused by the FD discretization inevitably introduce the accumulative temporal dispersion during the wavefield extrapolation, especially for a long-time simulation. To eliminate the time-stepping errors, here, we adopted the [Formula: see text]-space concept in the numerical discretization of the DFL viscoacoustic wave equation. Different from existing [Formula: see text]-space methods, our [Formula: see text]-space method for DFL viscoacoustic wave equation contains two correction terms, which were designed to compensate for the time-stepping errors in the dispersion-dominated operator and loss-dominated operator, respectively. Using theoretical analyses and numerical experiments, we determine that our [Formula: see text]-space approach is superior to the traditional FD-PS scheme mainly in three aspects. First, our approach can effectively compensate for the time-stepping errors. Second, the stability condition is more relaxed, which makes the selection of sampling intervals more flexible. Finally, the [Formula: see text]-space approach allows us to conduct high-accuracy wavefield extrapolation with larger time steps. These features make our scheme suitable for seismic modeling and imaging problems.


2010 ◽  
Vol 2010 ◽  
pp. 1-20
Author(s):  
Wanchak Satsanit ◽  
Amnuay Kananthai

Firstly, we studied the solution of the equation⊗k◊Bku(x)=f(x)whereu(x)is an unknown unknown function forx=(x1,x2,…,xn)∈ℝn,f(x)is the generalized function,kis a positive integer. Finally, we have studied the solution of the nonlinear equation⊗k◊Bku(x)=f(x,□k−1LkΔBk□Bku(x)). It was found that the existence of the solutionu(x)of such an equation depends on the condition offand□k−1LkΔBk□Bku(x). Moreover such solutionu(x)is related to the inhomogeneous wave equation depending on the conditions ofp,q, andk.


Author(s):  
N.H. Sweilam ◽  
T.A. Assiri

In this paper, the space fractional wave equation (SFWE) is numerically studied, where the fractional derivative is defined in the sense of Caputo. An explicit finite difference approximation (EFDA) for SFWE is presented. The stability and the error analysis of the EFDA are discussed. To demonstrate the effectiveness of the approximated method, some test examples are presented.   


Sign in / Sign up

Export Citation Format

Share Document