scholarly journals Memes Evolution in a Memetic Variant of Particle Swarm Optimization

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 423 ◽  
Author(s):  
Umberto Bartoccini ◽  
Arturo Carpi ◽  
Valentina Poggioni ◽  
Valentino Santucci

In this work, a coevolving memetic particle swarm optimization (CoMPSO) algorithm is presented. CoMPSO introduces the memetic evolution of local search operators in particle swarm optimization (PSO) continuous/discrete hybrid search spaces. The proposed solution allows one to overcome the rigidity of uniform local search strategies when applied to PSO. The key contribution is that memes provides each particle of a PSO scheme with the ability to adapt its exploration dynamics to the local characteristics of the search space landscape. The objective is obtained by an original hybrid continuous/discrete meme representation and a probabilistic co-evolving PSO scheme for discrete, continuous, or hybrid spaces. The coevolving memetic PSO evolves both the solutions and their associated memes, i.e. the local search operators. The proposed CoMPSO approach has been experimented on a standard suite of numerical optimization benchmark problems. Preliminary experimental results show that CoMPSO is competitive with respect to standard PSO and other memetic PSO schemes in literature, and its a promising starting point for further research in adaptive PSO local search operators.

2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants.


2017 ◽  
Vol 29 (1) ◽  
pp. 127-142
Author(s):  
Rkia Fajr ◽  
Abdelaziz Bouroumi

Abstract This paper introduces a new variant of the particle swarm optimization (PSO) algorithm, designed for global optimization of multidimensional functions. The goal of this variant, called ImPSO, is to improve the exploration and exploitation abilities of the algorithm by introducing a new operation in the iterative search process. The use of this operation is governed by a stochastic rule that ensures either the exploration of new regions of the search space or the exploitation of good intermediate solutions. The proposed method is inspired by collaborative human learning and uses as a starting point a basic PSO variant with constriction factor and velocity clamping. Simulation results that show the ability of ImPSO to locate the global optima of multidimensional functions are presented for 10 well-know benchmark functions from CEC-2013 and CEC-2005. These results are compared with the PSO variant used as starting point, three other PSO variants, one of which is based on human learning strategies, and three alternative evolutionary computing methods.


Author(s):  
Cheng-Hung Chen ◽  
Marco P. Schoen ◽  
Ken W. Bosworth

A novel Condensed Hybrid Optimization (CHO) algorithm using Enhanced Continuous Tabu Search (ECTS) and Particle Swarm Optimization (PSO) is proposed. The proposed CHO algorithm combines the respective strengths of ECTS and PSO. The ECTS is a modified Tabu Search (TS), which has good search capabilities on large search spaces. In this study, ECTS is utilized to define smaller search spaces, which are used in a second stage by the basic PSO to find the respective local optimum. The ECTS covers the global search space by using a TS concept called diversification and then selects the most promising areas in the search space. Once the promising regions in the search space are defined, the proposed CHO algorithm employs another TS concept called intensification in order to search the promising area thoroughly. The proposed CHO algorithm is tested with the multi-dimensional Hyperbolic and Rosenbrock problems. Compared to other four algorithms, the simulations results indicate that the accuracy and effectiveness of the proposed CHO algorithm.


Author(s):  
Gomaa Zaki El-Far

This paper proposes a modified particle swarm optimization algorithm (MPSO) to design adaptive neuro-fuzzy controller parameters for controlling the behavior of non-linear dynamical systems. The modification of the proposed algorithm includes adding adaptive weights to the swarm optimization algorithm, which introduces a new update. The proposed MPSO algorithm uses a minimum velocity threshold to control the velocity of the particles, avoids clustering of the particles, and maintains the diversity of the population in the search space. The mechanism of MPSO has better potential to explore good solutions in new search spaces. The proposed MPSO algorithm is also used to tune and optimize the controller parameters like the scaling factors, the membership functions, and the rule base. To illustrate the adaptation process, the proposed neuro-fuzzy controller based on MPSO algorithm is applied successfully to control the behavior of both non-linear single machine power systems and non-linear inverted pendulum systems. Simulation results demonstrate that the adaptive neuro-fuzzy logic controller application based on MPSO can effectively and robustly enhance the damping of oscillations.


2014 ◽  
Vol 4 (3) ◽  
pp. 189-204 ◽  
Author(s):  
Simone A. Ludwig

Abstract Adaptive Particle Swarm Optimization (PSO) variants have become popular in recent years. The main idea of these adaptive PSO variants is that they adaptively change their search behavior during the optimization process based on information gathered during the run. Adaptive PSO variants have shown to be able to solve a wide range of difficult optimization problems efficiently and effectively. In this paper we propose a Repulsive Self-adaptive Acceleration PSO (RSAPSO) variant that adaptively optimizes the velocity weights of every particle at every iteration. The velocity weights include the acceleration constants as well as the inertia weight that are responsible for the balance between exploration and exploitation. Our proposed RSAPSO variant optimizes the velocity weights that are then used to search for the optimal solution of the problem (e.g., benchmark function). We compare RSAPSO to four known adaptive PSO variants (decreasing weight PSO, time-varying acceleration coefficients PSO, guaranteed convergence PSO, and attractive and repulsive PSO) on twenty benchmark problems. The results show that RSAPSO achives better results compared to the known PSO variants on difficult optimization problems that require large numbers of function evaluations.


2007 ◽  
Vol 2007 ◽  
pp. 1-25 ◽  
Author(s):  
Ammar W. Mohemmed ◽  
Nirod Chandra Sahoo

This paper presents a novel hybrid algorithm based on particle swarm optimization (PSO) and noising metaheuristics for solving the single-source shortest-path problem (SPP) commonly encountered in graph theory. This hybrid search process combines PSO for iteratively finding a population of better solutions and noising method for diversifying the search scheme to solve this problem. A new encoding/decoding scheme based on heuristics has been devised for representing the SPP parameters as a particle in PSO. Noising-method-based metaheuristics (noisy local search) have been incorporated in order to enhance the overall search efficiency. In particular, an iteration of the proposed hybrid algorithm consists of a standard PSO iteration and few trials of noising scheme applied to each better/improved particle for local search, where the neighborhood of each such particle is noisily explored with an elementary transformation of the particle so as to escape possible local minima and to diversify the search. Simulation results on several networks with random topologies are used to illustrate the efficiency of the proposed hybrid algorithm for shortest-path computation. The proposed algorithm can be used as a platform for solving other NP-hard SPPs.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Tao Sun ◽  
Ming-hai Xu

Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.


2016 ◽  
Vol 11 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Maolong Xi ◽  
Xiaojun Wu ◽  
Xinyi Sheng ◽  
Jun Sun ◽  
Wenbo Xu

Quantum-behaved particle swarm optimization, which was motivated by analysis of particle swarm optimization and quantum system, has shown compared performance in finding the optimal solutions for many optimization problems to other evolutionary algorithms. To address the problem of premature, a local search strategy is proposed to improve the performance of quantum-behaved particle swarm optimization. In proposed local search strategy, a super particle is presented which is a collection body of randomly selected particles’ dimension information in the swarm. The selected probability of particles in swarm is different and determined by their fitness values. To minimization problems, the fitness value of one particle is smaller; the selected probability is more and will contribute more information in constructing the super particle. In addition, in order to investigate the influence on algorithm performance with different local search space, four methods of computing the local search radius are applied in local search strategy and propose four variants of local search quantum-behaved particle swarm optimization. Empirical studies on a suite of well-known benchmark functions are undertaken in order to make an overall performance comparison among the proposed methods and other quantum-behaved particle swarm optimization. The simulation results show that the proposed quantum-behaved particle swarm optimization variants have better advantages over the original quantum-behaved particle swarm optimization.


2013 ◽  
Vol 321-324 ◽  
pp. 2183-2186
Author(s):  
Zheng Bo Li

Particle Swarm Optimization (PSO) is a swarm intelligence algorithm to achieve through competition and collaboration between the particles in the complex search space to find the global optimum. Basic PSO algorithm evolutionary late convergence speed is slow and easy to fall into the shortcomings of local minima, this paper presents a multi-learning particle swarm optimization algorithm, the algorithm particle at the same time to follow their own to find the optimal solution, random optimal solution and the optimal solution for the whole group of other particles with dimensions velocity update discriminate area boundary position optimization updates and small-scale perturbations of the global best position, in order to enhance the algorithm escape from local optima capacity. The test results show that several typical functions: improved particle swarm algorithms significantly improve the global search ability, and can effectively avoid the premature convergence problem. Algorithm so that the relative robustness of the search space position has been significantly improved global optimal solution in high-dimensional optimization problem, suitable for solving similar problems, the calculation results can meet the requirements of practical engineering.


Sign in / Sign up

Export Citation Format

Share Document