scholarly journals Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals

Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 646 ◽  
Author(s):  
Jiaxin Nie ◽  
Wenhao Gui

The competing risk model based on Lindley distribution is discussed under the progressive type-II censored sample data with binomial removals. The maximum likelihood estimation of the unknown parameters of the distribution is established. Using the Lindley approximation method, we also obtain the Bayesian estimation of the unknown parameters of the distribution under different loss functions. The performance of different estimates is studied in this article. A real practical dataset is analyzed for illustration.

Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


2018 ◽  
Vol 47 (1) ◽  
pp. 77-94
Author(s):  
Pradeep Kumar Vishwakarma ◽  
Arun Kaushik ◽  
Aakriti Pandey ◽  
Umesh Singh ◽  
Sanjay Kumar Singh

This paper deals with the estimation procedure for inverse Weibull distribution under progressive type-II censored samples when removals follow Beta-binomial probability law. To estimate the unknown parameters, the maximum likelihood and Bayes estimators are obtained under progressive censoring scheme mentioned above. Bayes estimates are obtained using Markov chain Monte Carlo (MCMC) technique considering square error loss function and compared with the corresponding MLE's. Further, the expected total time on test is obtained under considered censoring scheme.  Finally, a real data set has been analysed to check the validity of the study.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2080
Author(s):  
E. H. Hafez ◽  
Fathy H. Riad ◽  
Sh. A. M. Mubarak ◽  
M. S. Mohamed

Saving money and time are very important in any research project, so we must find a way to decrease the time of the experiment. This method is called the accelerated life tests (ALT) under censored samples, which is a very efficient method to reduce time, which leads to a decrease in the cost of the experiment. This research project includes inference on Lindley distribution in a simple step-stress ALT for the Type II progressive censored sample. The paper contains two major sections, which are a simulation study and a real-data application on the experimental design of an industry experiment on lamps. These sections are used to conduct results on the study of the distribution. The simulation was done using Mathematica 11 program. To use real data in the censored sample, we fitted them to be compatible with the Lindley distribution using the modified Kolmogorov–Smirnov (KS) goodness of fit test for progressive Type II censored data. We used the tampered random variable (TRV) acceleration model to generate early failures of items under stress. We also found the values of the distribution parameter and the accelerating factor using the maximum likelihood estimation of (MLEs) and Bayes estimates (BEs) using symmetric loss function for both simulated data and real data. Next, we estimated the upper and lower bounds of the parameters using three methods, namely approximate confidence intervals (CIs), Bootstrap CIs, and credible CIs, for both parameters of the distribution, ψ and ζ. Finally, we found the value of the parameter for the real data set under normal use conditions and stress conditions and graphed the reliability functions under normal and accelerated use.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 319 ◽  
Author(s):  
Xuehua Hu ◽  
Wenhao Gui

In this paper, first we consider the maximum likelihood estimators for two unknown parameters, reliability and hazard functions of the generalized Pareto distribution under progressively Type II censored sample. Next, we discuss the asymptotic confidence intervals for two unknown parameters, reliability and hazard functions by using the delta method. Then, based on the bootstrap algorithm, we obtain another two pairs of approximate confidence intervals. Furthermore, by applying the Markov Chain Monte Carlo techniques, we derive the Bayesian estimates of the two unknown parameters, reliability and hazard functions under various balanced loss functions and the corresponding confidence intervals. A simulation study was conducted to compare the performances of the proposed estimators. A real dataset analysis was carried out to illustrate the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document