scholarly journals The Transmuted Odd Fréchet-G Family of Distributions: Theory and Applications

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 958 ◽  
Author(s):  
Majdah M. Badr ◽  
Ibrahim Elbatal ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

The last years, the odd Fréchet-G family has been considered with success in various statistical applications. This notoriety can be explained by its simple and flexible exponential-odd structure quite different to the other existing families, with the use of only one additional parameter. In counter part, some of its statistical properties suffer of a lack of adaptivity in the sense that they really depend on the choice of the baseline distribution. Hence, efforts have been made to relax this subjectivity by investigating extensions or generalizations of the odd transformation at the heart of the construction of this family, with the aim to reach new perspectives of applications as well. This study explores another possibility, based on the transformation of the whole cumulative distribution function of this family (while keeping the odd transformation intact), through the use of the quadratic rank transmutation that has proven itself in other contexts. We thus introduce and study a new family of flexible distributions called the transmuted odd Fréchet-G family. We show how the former odd Fréchet-G family is enriched by the proposed transformation through theoretical and practical results. We emphasize the special distribution based on the standard exponential distribution because of its desirable features for the statistical modeling. In particular, different kinds of monotonic and nonmonotonic shapes for the probability density and hazard rate functions are observed. Then, we show how the new family can be used in practice. We discuss in detail the parametric estimation of a special model, along with a simulation study. Practical data sets are handle with quite favorable results for the new modeling strategy.

Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3855-3867 ◽  
Author(s):  
Hassan Bakouch ◽  
Christophe Chesneau ◽  
Muhammad Khan

In this paper, we introduce a new family of distributions extending the odd family of distributions. A new tuning parameter is introduced, with some connections to the well-known transmuted transformation. Some mathematical results are obtained, including moments, generating function and order statistics. Then, we study a special case dealing with the standard loglogistic distribution and the modifiedWeibull distribution. Its main features are to have densities with flexible shapes where skewness, kurtosis, heavy tails and modality can be observed, and increasing-decreasing-increasing, unimodal and bathtub shaped hazard rate functions. Estimation of the related parameters is investigated by the maximum likelihood method. We illustrate the usefulness of our extended odd family of distributions with applications to two practical data sets.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 953
Author(s):  
Rashad A. R. Bantan ◽  
Christophe Chesneau ◽  
Farrukh Jamal ◽  
Mohammed Elgarhy

This paper develops the exponentiated Mfamily of continuous distributions, aiming to provide new statistical models for data fitting purposes. It stands out from the other families, as it depends on two baseline distributions, with the use of ratio and power transforms in the definition of the main cumulative distribution function. Thanks to the joint action of the possibly different baseline distributions, flexible statistical models can be created, motivating a complete study in this regard. Thus, we discuss the theoretical properties of the new family, with emphasis on those of potential interest to the overall probability and statistics. Then, a new three-parameter lifetime distribution is derived, with the choices of the inverse exponential and exponential distributions as baselines. After pointing out the great flexibility of the related model, we apply it to analyze an actual dataset of current interest: the daily COVID-19 cases observed in Pakistan from 21 March to 29 May 2020 (inclusive). As notable results, we demonstrate that the proposed model is the best among the 15 top ranked models in the literature, including the inverse exponential and exponential models, several modern extensions of them depending on more parameters, and the “unexponentiated” version of the proposed model as well. As future perspectives, the proposed model can be of interest to analyze data on COVID-19 cases in other countries, for possible comparison studies.


2020 ◽  
Vol 9 (5) ◽  
pp. 179-184
Author(s):  
Kamlesh Kumar Shukla

In this paper, Truncated Akash distribution has been proposed. Its mean and variance have been derived. Nature of cumulative distribution and hazard rate functions have been derived and presented graphically. Its moments including Coefficient of Variation, Skenwness, Kurtosis and Index of dispersion have been derived. Maximum likelihood method of estimation has been used to estimate the parameter of proposed model. It has been applied on three data sets and compares its superiority over one parameter exponential, Lindley, Akash, Ishita and truncated Lindley distribution.


2014 ◽  
Vol 53 (01) ◽  
pp. 54-61 ◽  
Author(s):  
M. Preuß ◽  
A. Ziegler

SummaryBackground: The random-effects (RE) model is the standard choice for meta-analysis in the presence of heterogeneity, and the stand ard RE method is the DerSimonian and Laird (DSL) approach, where the degree of heterogeneity is estimated using a moment-estimator. The DSL approach does not take into account the variability of the estimated heterogeneity variance in the estimation of Cochran’s Q. Biggerstaff and Jackson derived the exact cumulative distribution function (CDF) of Q to account for the variability of Ť 2.Objectives: The first objective is to show that the explicit numerical computation of the density function of Cochran’s Q is not required. The second objective is to develop an R package with the possibility to easily calculate the classical RE method and the new exact RE method.Methods: The novel approach was validated in extensive simulation studies. The different approaches used in the simulation studies, including the exact weights RE meta-analysis, the I 2 and T 2 estimates together with their confidence intervals were implemented in the R package metaxa.Results: The comparison with the classical DSL method showed that the exact weights RE meta-analysis kept the nominal type I error level better and that it had greater power in case of many small studies and a single large study. The Hedges RE approach had inflated type I error levels. Another advantage of the exact weights RE meta-analysis is that an exact confidence interval for T 2is readily available. The exact weights RE approach had greater power in case of few studies, while the restricted maximum likelihood (REML) approach was superior in case of a large number of studies. Differences between the exact weights RE meta-analysis and the DSL approach were observed in the re-analysis of real data sets. Application of the exact weights RE meta-analysis, REML, and the DSL approach to real data sets showed that conclusions between these methods differed.Conclusions: The simplification does not require the calculation of the density of Cochran’s Q, but only the calculation of the cumulative distribution function, while the previous approach required the computation of both the density and the cumulative distribution function. It thus reduces computation time, improves numerical stability, and reduces the approximation error in meta-analysis. The different approaches, including the exact weights RE meta-analysis, the I 2 and T 2estimates together with their confidence intervals are available in the R package metaxa, which can be used in applications.


Author(s):  
O. R. Uwaeme ◽  
N. P. Akpan ◽  
U. C. Orumie

In this study, we proposed a generalization of the Pranav distribution by Shukla (2018). This new distribution called an extended Pranav distribution is obtained using the exponentiation method. The statistical characteristics of this new distribution such as the moments, moment generating function, reliability function, hazard function, Rényi entropy and order statistics are derived. The graphical illustrations of the shapes of the probability density function, the cumulative distribution function, and hazard rate functions are provided. The maximum likelihood estimates of the parameters were obtained and finally, we examine the performance of this new distribution using some real-life data sets to show its flexibility and better goodness of fit as compared with other distributions.


2018 ◽  
Vol 29 (2) ◽  
pp. 155
Author(s):  
Shurooq Ahmed Al-Sultany

This paper deals with using one method for transforming two parameters given distribution to another form with three parameters distribution, through using idea of reparameterization with powering the given cumulative distribution function by new parameter, where this work gives a new family through using new parameter which is necessary for generating values of the r.v from given CDF through smoothing the values of the given random variable to obtain new values of r.v using three set of parameters rather than two. The new model Frechet p.d.f is obtained and also its Cumulative distribution function is found then we apply three methods of estimation (which are Maximum likelihood , moments estimator , and the third method is depend on using least square regression approach). Different set of initial values of parameters ( , , ) and different samples size (n=25,50,75,100). The simulation procedure is done using matlab-R2014b, and results are compared using integrated Mean square error.


2017 ◽  
Vol 6 (5) ◽  
pp. 1 ◽  
Author(s):  
Hossein Najarzadegan ◽  
Mohammad Hossein Alamatsaz ◽  
Saied Hayati

Our purpose in this study includes introducing a new family of distributions as an alternative to beta-G (B-G) distribution with flexible hazard rate and greater reliability which we call Truncated Weibull-G (TW-G) distribution. We shall discuss several submodels of the family in detail. Then, its mathematical properties such as expansions, probability density function and cumulative distribution function, moments, moment generating function, order statistics, entropies, unimodality, stochastic comparison with the B-G distribution and stress-strength reliability function are studied. Moreover, we study shape of the density and hazard rate functions, and based on the maximum likelihood method, estimate parameters of the model. Finally, we apply the model to a real data set and compare B-G distribution with our proposed model.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 574-593
Author(s):  
Abdulhakim A. Al-Babtain ◽  
Ibrahim Elbatal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

AbstractRecent studies have highlighted the statistical relevance and applicability of trigonometric distributions for the modeling of various phenomena. This paper contributes to the subject by investigating a new trigonometric family of distributions defined from the alliance of the families known as sine-G and Topp-Leone generated (TL-G), inspiring the name of sine TL-G family. The characteristics of this new family are studied through analytical, graphical and numerical approaches. Stochastic ordering and equivalence results, determination of the mode(s), some expansions of distributional functions, expressions of the quantile function and moments and basics on order statistics are discussed. In addition, we emphasize the fact that the sine TL-G family is able to generate original, simple and pliant trigonometric models for statistical purposes, beyond the capacity of the former sine-G models and other top models of the literature. This fact is revealed with the special three-parameter sine TL-G model based on the inverse Lomax model, through an efficient parametric estimation and the adjustment of two data sets of interest.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 346 ◽  
Author(s):  
Maha A. Aldahlan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy ◽  
Ibrahim Elbatal

As a matter of fact, the statistical literature lacks of general family of distributions based on the truncated Cauchy distribution. In this paper, such a family is proposed, called the truncated Cauchy power-G family. It stands out for the originality of the involved functions, its overall simplicity and its desirable properties for modelling purposes. In particular, (i) only one parameter is added to the baseline distribution avoiding the over-parametrization phenomenon, (ii) the related probability functions (cumulative distribution, probability density, hazard rate, and quantile functions) have tractable expressions, and (iii) thanks to the combined action of the arctangent and power functions, the flexible properties of the baseline distribution (symmetry, skewness, kurtosis, etc.) can be really enhanced. These aspects are discussed in detail, with the support of comprehensive numerical and graphical results. Furthermore, important mathematical features of the new family are derived, such as the moments, skewness and kurtosis, two kinds of entropy and order statistics. For the applied side, new models can be created in view of fitting data sets with simple or complex structure. This last point is illustrated by the consideration of the Weibull distribution as baseline, the maximum likelihood method of estimation and two practical data sets wit different skewness properties. The obtained results show that the truncated Cauchy power-G family is very competitive in comparison to other well implanted general families.


Sign in / Sign up

Export Citation Format

Share Document