scholarly journals The Truncated Cauchy Power Family of Distributions with Inference and Applications

Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 346 ◽  
Author(s):  
Maha A. Aldahlan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy ◽  
Ibrahim Elbatal

As a matter of fact, the statistical literature lacks of general family of distributions based on the truncated Cauchy distribution. In this paper, such a family is proposed, called the truncated Cauchy power-G family. It stands out for the originality of the involved functions, its overall simplicity and its desirable properties for modelling purposes. In particular, (i) only one parameter is added to the baseline distribution avoiding the over-parametrization phenomenon, (ii) the related probability functions (cumulative distribution, probability density, hazard rate, and quantile functions) have tractable expressions, and (iii) thanks to the combined action of the arctangent and power functions, the flexible properties of the baseline distribution (symmetry, skewness, kurtosis, etc.) can be really enhanced. These aspects are discussed in detail, with the support of comprehensive numerical and graphical results. Furthermore, important mathematical features of the new family are derived, such as the moments, skewness and kurtosis, two kinds of entropy and order statistics. For the applied side, new models can be created in view of fitting data sets with simple or complex structure. This last point is illustrated by the consideration of the Weibull distribution as baseline, the maximum likelihood method of estimation and two practical data sets wit different skewness properties. The obtained results show that the truncated Cauchy power-G family is very competitive in comparison to other well implanted general families.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1114
Author(s):  
Guillermo Martínez-Flórez ◽  
Roger Tovar-Falón ◽  
María Martínez-Guerra

This paper introduces a new family of distributions for modelling censored multimodal data. The model extends the widely known tobit model by introducing two parameters that control the shape and the asymmetry of the distribution. Basic properties of this new family of distributions are studied in detail and a model for censored positive data is also studied. The problem of estimating parameters is addressed by considering the maximum likelihood method. The score functions and the elements of the observed information matrix are given. Finally, three applications to real data sets are reported to illustrate the developed methodology.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3855-3867 ◽  
Author(s):  
Hassan Bakouch ◽  
Christophe Chesneau ◽  
Muhammad Khan

In this paper, we introduce a new family of distributions extending the odd family of distributions. A new tuning parameter is introduced, with some connections to the well-known transmuted transformation. Some mathematical results are obtained, including moments, generating function and order statistics. Then, we study a special case dealing with the standard loglogistic distribution and the modifiedWeibull distribution. Its main features are to have densities with flexible shapes where skewness, kurtosis, heavy tails and modality can be observed, and increasing-decreasing-increasing, unimodal and bathtub shaped hazard rate functions. Estimation of the related parameters is investigated by the maximum likelihood method. We illustrate the usefulness of our extended odd family of distributions with applications to two practical data sets.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1089 ◽  
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

In this article, we introduce a new general family of distributions derived to the truncated inverted Kumaraswamy distribution (on the unit interval), called the truncated inverted Kumaraswamy generated family. Among its qualities, it is characterized with tractable functions, has the ability to enhance the flexibility of a given distribution, and demonstrates nice statistical properties, including competitive fits for various kinds of data. A particular focus is given on a special member of the family defined with the exponential distribution as baseline, offering a new three-parameter lifetime distribution. This new distribution has the advantage of having a hazard rate function allowing monotonically increasing, decreasing, and upside-down bathtub shapes. In full generality, important properties of the new family are determined, with an emphasis on the entropy (Rényi and Shannon entropy). The estimation of the model parameters is established by the maximum likelihood method. A numerical simulation study illustrates the nice performance of the obtained estimates. Two practical data sets are then analyzed. We thus prove the potential of the new model in terms of fitting, with favorable results in comparison to other modern parametric models of the literature.


Author(s):  
Jamilu Yunusa Falgore ◽  
Sani Ibrahim Doguwa

A new generator of continuous distributions called the Inverse Lomax-Exponentiated G family, which has three extra positive parameters is proposed. The structural properties of the new family that holds for any continuous baseline model including explicit density function expressions, moments, inequality measurements, moment generating function, reliability functions, Renyi and Shanon entropies, and distribution of order statistics are derived. A Monte Carlo simulation to test the efficiency of the maximum likelihood estimates is conducted. The application of the new sub-model to the two data sets using the maximum likelihood method indicates that the new model is better than the existing competitors.


Author(s):  
Muhammad Aslam ◽  
Zawar Hussain ◽  
Zahid Asghar

In this article, we propose a new family of distributions using the T-X family named as modified generalized Marshall-Olkin family of distributions. Comprehensive mathematical and statistical properties of this family of distributions are provided. The model parameters are estimated by maximum likelihood method. The maximum likelihood estimation under Type-II censoring is also discussed. Two lifetime data sets are used to show the suitability and applicability of the new family of distributions. For comparison purposes, different goodness of fit tests are used.  


2021 ◽  
Vol 2 ◽  
pp. 2
Author(s):  
Femi Samuel Adeyinka

This article investigates the T-X class of Topp Leone- G family of distributions. Some members of the new family are discussed.  The exponential-Topp Leone-exponential distribution (ETLED) which is one of the members of the family is derived and some of its properties which include central and non-central moments, quantiles, incomplete moments, conditional moments, mean deviation, Bonferroni and Lorenz curves, survival and hazard functions, moment generating function, characteristic function and R`enyi entropy are established. The probability density function (pdf) of order statistics of the model is obtained and the parameter estimation is addressed with the maximum likelihood method (MLE). Three real data sets are used to demonstrate its application and the results are compared with two other models in the literature.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1177
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

In this paper, we introduce a new general family of distributions obtained by a subtle combination of two well-established families of distributions: the so-called power Topp–Leone-G and inverse exponential-G families. Its definition is centered around an original cumulative distribution function involving exponential and polynomial functions. Some desirable theoretical properties of the new family are discussed in full generality, with comprehensive results on stochastic ordering, quantile function and related measures, general moments and related measures, and the Shannon entropy. Then, a statistical parametric model is constructed from a special member of the family, defined with the use of the inverse Lomax distribution as the baseline distribution. The maximum likelihood method was applied to estimate the unknown model parameters. From the general theory of this method, the asymptotic confidence intervals of these parameters were deduced. A simulation study was conducted to evaluate the numerical behavior of the estimates we obtained. Finally, in order to highlight the practical perspectives of the new family, two real-life data sets were analyzed. All the measures considered are favorable to the new model in comparison to four serious competitors.


Author(s):  
Christophe Chesneau ◽  
Lishamol Tomy ◽  
Jiju Gillariose

AbstractThis note focuses on a new one-parameter unit probability distribution centered around the inverse cosine and power functions. A special case of this distribution has the exact inverse cosine function as a probability density function. To our knowledge, despite obvious mathematical interest, such a probability density function has never been considered in Probability and Statistics. Here, we fill this gap by pointing out the main properties of the proposed distribution, from both the theoretical and practical aspects. Specifically, we provide the analytical form expressions for its cumulative distribution function, survival function, hazard rate function, raw moments and incomplete moments. The asymptotes and shape properties of the probability density and hazard rate functions are described, as well as the skewness and kurtosis properties, revealing the flexible nature of the new distribution. In particular, it appears to be “round mesokurtic” and “left skewed”. With these features in mind, special attention is given to find empirical applications of the new distribution to real data sets. Accordingly, the proposed distribution is compared with the well-known power distribution by means of two real data sets.


Sign in / Sign up

Export Citation Format

Share Document