scholarly journals TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2072
Author(s):  
Máximo Méndez ◽  
Mariano Frutos ◽  
Fabio Miguel ◽  
Ricardo Aguasca-Colomo

A common technique used to solve multi-objective optimization problems consists of first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most interesting solution for a human decision maker (DM). Sometimes this technique is referred to as generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal front of non-dominated solutions and a second stage, which uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show the utility of the proposed methodology, several original experiments and comparisons between different recognized MOEAs were carried out on a welded beam engineering design benchmark problem. The problem was solved with two and three objectives and it is characterized by a lack of knowledge about ideal and nadir values.

Author(s):  
Zhenkun Wang ◽  
Qingyan Li ◽  
Qite Yang ◽  
Hisao Ishibuchi

AbstractIt has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the $$\epsilon $$ ϵ -dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF.


2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


2015 ◽  
Vol 32 (05) ◽  
pp. 1550036 ◽  
Author(s):  
Chun-An Liu ◽  
Yuping Wang ◽  
Aihong Ren

For dynamic multi-objective constrained optimization problem (DMCOP), it is important to find a sufficient number of uniformly distributed and representative dynamic Pareto optimal solutions. In this paper, the time period of the DMCOP is first divided into several random subperiods. In each random subperiod, the DMCOP is approximately regarded as a static optimization problem by taking the time subperiod fixed. Then, in order to decrease the amount of computation and improve the effectiveness of the algorithm, the dynamic multi-objective constrained optimization problem is further transformed into a dynamic bi-objective constrained optimization problem based on the dynamic mean rank variance and dynamic mean density variance of the evolution population. The evolution operators and a self-check operator which can automatically checkout the change of time parameter are introduced to solve the optimization problem efficiently. And finally, a dynamic multi-objective constrained optimization evolutionary algorithm is proposed. Also, the convergence analysis for the proposed algorithm is given. The computer simulations are made on four dynamic multi-objective optimization test functions and the results demonstrate that the proposed algorithm can effectively track and find the varying Pareto optimal solutions or the varying Pareto fronts with the change of time.


2005 ◽  
Vol 13 (4) ◽  
pp. 501-525 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Manikanth Mohan ◽  
Shikhar Mishra

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ε-dominance concept introduced earlier (Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Kalyan Shankar Bhattacharjee ◽  
Hemant Kumar Singh ◽  
Tapabrata Ray

In engineering design optimization, evaluation of a single solution (design) often requires running one or more computationally expensive simulations. Surrogate assisted optimization (SAO) approaches have long been used for solving such problems, in which approximations/surrogates are used in lieu of computationally expensive simulations during the course of search. Existing SAO approaches often use the same type of approximation model to represent all objectives and constraints in all regions of the search space. The selection of a type of surrogate model over another is nontrivial and an a priori choice limits flexibility in representation. In this paper, we introduce a multi-objective evolutionary algorithm (EA) with multiple adaptive spatially distributed surrogates. Instead of a single global surrogate, local surrogates of multiple types are constructed in the neighborhood of each offspring solution and a multi-objective search is conducted using the best surrogate for each objective and constraint function. The proposed approach offers flexibility of representation by capitalizing on the benefits offered by various types of surrogates in different regions of the search space. The approach is also immune to illvalidation since approximated and truly evaluated solutions are not ranked together. The performance of the proposed surrogate assisted multi-objective algorithm (SAMO) is compared with baseline nondominated sorting genetic algorithm II (NSGA-II) and NSGA-II embedded with global and local surrogates of various types. The performance of the proposed approach is quantitatively assessed using several engineering design optimization problems. The numerical experiments demonstrate competence and consistency of SAMO.


2020 ◽  
Author(s):  
Ahlem Aboud ◽  
Raja Fdhila ◽  
Amir Hussain ◽  
Adel Alimi

Distributed architecture-based Particle Swarm Optimization is very useful for static optimization and not yet explored to solve complex dynamic multi-objective optimization problems. This study proposes a novel Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO) algorithm with two optimization levels. In the first level, all solutions are optimized in the same search space and the second level is based on a distributed architecture using the Pareto ranking operator for dynamic multi-swarm subdivision. The proposed approach adopts a dynamic handling strategy using a set of detectors to keep track of change in the objective function that is impacted by the problem’s time-varying parameters at each level. To ensure timely adaptation during the optimization process, a dynamic response strategy is considered for the reevaluation of all non-improved solutions, while the worst particles are replaced with a newly generated one. The convergence and<br>diversity performance of the DPb-MOPSO algorithm are proven through Friedman Analysis of Variance, and the Lyapunov theorem is used to prove stability analysis over the Inverted Generational Distance (IGD) and Hypervolume Difference (HVD) metrics. Compared to other evolutionary algorithms, the novel DPb-MOPSO is shown to be most robust for solving complex problems over a range of changes in both the Pareto Optimal Set and Pareto Optimal Front. <br>


Author(s):  
Gabriele Eichfelder ◽  
Leo Warnow

AbstractFor a continuous multi-objective optimization problem, it is usually not a practical approach to compute all its nondominated points because there are infinitely many of them. For this reason, a typical approach is to compute an approximation of the nondominated set. A common technique for this approach is to generate a polyhedron which contains the nondominated set. However, often these approximations are used for further evaluations. For those applications a polyhedron is a structure that is not easy to handle. In this paper, we introduce an approximation with a simpler structure respecting the natural ordering. In particular, we compute a box-coverage of the nondominated set. To do so, we use an approach that, in general, allows us to update not only one but several boxes whenever a new nondominated point is found. The algorithm is guaranteed to stop with a finite number of boxes, each being sufficiently thin.


Sign in / Sign up

Export Citation Format

Share Document