scholarly journals Robust Control Design to the Furuta System under Time Delay Measurement Feedback and Exogenous-Based Perturbation

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2131
Author(s):  
Gisela Pujol-Vazquez ◽  
Saleh Mobayen ◽  
Leonardo Acho

When dealing with real control experimentation, the designer has to take into account several uncertainties, such as: time variation of the system parameters, exogenous perturbation and the presence of time delay in the feedback line. In the later case, this time delay behaviour may be random, or chaotic. Hence, the control block has to be robust. In this work, a robust delay-dependent controller based on H∞ theory is presented by employing the linear matrix inequalities techniques to design an efficient output feedback control. This approach is carefully tuned to face with random time-varying measurement feedback and applied to the Furuta pendulum subject to an exogenous ground perturbation. Therefore, a recent experimental platform is described. Here, the ground perturbation is realised using an Hexapod robotic system. According to experimental data, the proposed control approach is robust and the control objective is completely satisfied.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xiu-feng Miao ◽  
Long-suo Li

AbstractThis paper considers the problem of estimating the state vector of uncertain stochastic time-delay systems, while the system states are unmeasured. The system under study involves parameter uncertainties, noise disturbances and time delay, and they are dependent on the state. Based on the Lyapunov–Krasovskii functional approach, we present a delay-dependent condition for the existence of a state observer in terms of a linear matrix inequality. A numerical example is exploited to show the validity of the results obtained.


2011 ◽  
Vol 20 (04) ◽  
pp. 657-666
Author(s):  
CHOON KI AHN

In this paper, the delay-dependent state estimation problem for switched Hopfield neural networks with time-delay is investigated. Based on the Lyapunov–Krasovskii stability theory, a new delay-dependent state estimator for switched Hopfield neural networks is established to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The gain matrix of the proposed estimator is characterized in terms of the solution to a linear matrix inequality (LMI), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng Gong ◽  
Yi Zeng

This paper investigates theH∞filtering problem of discrete singular Markov jump systems (SMJSs) with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition onH∞-disturbance attenuation is presented, in which both stability and prescribedH∞performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependentH∞filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI). Finally, an example is given to illustrate the effectiveness of the result.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Yajun Li ◽  
Zhaowen Huang

This paper deals with the robustH∞filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribedH∞performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zifan Gao ◽  
Jiaxiu Yang ◽  
Shuqian Zhu

This paper develops some improved stability and stabilization conditions of T-S fuzzy system with constant time-delay and interval time-varying delay with its derivative bounds available, respectively. These conditions are presented by linear matrix inequalities (LMIs) and derived by applying an augmented Lyapunov-Krasovskii functional (LKF) approach combined with a canonical Bessel-Legendre (B-L) inequality. Different from the existing LKFs, the proposed LKF involves more state variables in an augmented way resorting to the form of the B-L inequality. The B-L inequality is also applied in ensuring the positiveness of the constructed LKF and the negativeness of derivative of the LKF. By numerical examples, it is verified that the obtained stability conditions can ensure a larger upper bound of time-delay, the larger number of Legendre polynomials in the stability conditions can lead to less conservative results, and the stabilization condition is effective, respectively.


2014 ◽  
Vol 556-562 ◽  
pp. 4386-4390
Author(s):  
Zhao Ping Yuan

This paper is concerned with the stabilization problem for fuzzy Markovian jumping systems with distributed time delay. First, fuzzy Markovian jumping systems with distributed time delay are peoposed. Second, a novel criterion of delay-dependent robust stabilization for fuzzy Markovian jumping systems is established in terms of linear matrix inequalities (LMIs) by using Lyapunov stability theory and free-weighting matrix method. When these LMIS are feasible, an explicit expression of a desired adjustable state feedback controller is given. Based on the obtained criterion, the introduced controller ensures the overall closed-loop system asymptotically stable in mean square sense for all admissible uncertainties and time delay.


2016 ◽  
Vol 40 (3) ◽  
pp. 712-718 ◽  
Author(s):  
Mohsen Ekramian ◽  
Mohammad Ataei ◽  
Soroush Talebi

The stability problem of nonlinear time-delay systems is addressed. A quadratic constraint is employed to exploit the structure of nonlinearity in dynamical systems via a set of multiplier matrices. This yields less conservative results concerning stability analysis. By employing a Wirtinger-based inequality, a delay-dependent stability criterion is derived in terms of linear matrix inequalities for the nominal and uncertain systems. A numerical example is used to demonstrate the effectiveness of the proposed stability conditions in dealing with some larger class of nonlinearities.


2011 ◽  
Vol 58-60 ◽  
pp. 691-696
Author(s):  
Cheng Wang ◽  
Huan Bin Liu

This paper investigates the problems of delay-dependent passive analysis and control for uncertain stochastic systems with time-varying delay and norm-bounded parameters uncertainties. Delay-dependent stochastic passive condition for the uncertain stochastic time-delay systems is obtained based on Laypunov-Krasovkii functional approach. On the basis of this condition, a delay-dependent passive controller is presented. Sufficient condition for the existence of desired controller is formulated in terms of linear matrix inequality. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.


2014 ◽  
Vol 511-512 ◽  
pp. 875-879 ◽  
Author(s):  
Ya Jun Li ◽  
Yan Nong Liang

The H{infinity} filter design problem of recurrent neural networks with time delay is considered. Based on delay decomposition approach, the delay-dependent condition is derived to ensure that the filtering error system is globally asymptotically stable with a guaranteed performance. And the design of such a filter can be solved by the linear matrix inequality. A numerical example is provided to demonstrate that the developed approach is efficient.


2007 ◽  
Vol 49 (1) ◽  
pp. 111-129 ◽  
Author(s):  
Shuping Ma ◽  
Xinzhi Liu ◽  
Chenghui Zhang

This paper discusses robust stochastic stability and stabilization of time-delay discrete Markovian jump singular systems with parameter uncertainties. Based on the restricted system equivalent (RES) transformation, a delay-dependent linear matrix inequalities condition for time-delay discrete-time Markovian jump singular systems to be regular, causal and stochastically stable is established. With this condition, problems of robust stochastic stability and stabilization are solved, and delay-dependent linear matrix inequalities are obtained. A numerical example is also given to illustrate the effectiveness of this method.2000Mathematics subject classification: primary 39A12; secondary 93C55.


Sign in / Sign up

Export Citation Format

Share Document