scholarly journals From Boolean Valued Analysis to Quantum Set Theory: Mathematical Worldview of Gaisi Takeuti

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 397
Author(s):  
Masanao Ozawa

Gaisi Takeuti introduced Boolean valued analysis around 1974 to provide systematic applications of the Boolean valued models of set theory to analysis. Later, his methods were further developed by his followers, leading to solving several open problems in analysis and algebra. Using the methods of Boolean valued analysis, he further stepped forward to construct set theory that is based on quantum logic, as the first step to construct "quantum mathematics", a mathematics based on quantum logic. While it is known that the distributive law does not apply to quantum logic, and the equality axiom turns out not to hold in quantum set theory, he showed that the real numbers in quantum set theory are in one-to-one correspondence with the self-adjoint operators on a Hilbert space, or equivalently the physical quantities of the corresponding quantum system. As quantum logic is intrinsic and empirical, the results of the quantum set theory can be experimentally verified by quantum mechanics. In this paper, we analyze Takeuti’s mathematical world view underlying his program from two perspectives: set theoretical foundations of modern mathematics and extending the notion of sets to multi-valued logic. We outlook the present status of his program, and envisage the further development of the program, by which we would be able to take a huge step forward toward unraveling the mysteries of quantum mechanics that have persisted for many years.

2007 ◽  
Vol 72 (2) ◽  
pp. 625-648 ◽  
Author(s):  
Masanao Ozawa

AbstractIn 1981, Takeuti introduced quantum set theory as the quantum counterpart of Boolean valued models of set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed subspaces in a Hilbert space and showed that appropriate quantum counterparts of ZFC axioms hold in the model. Here, Takeuti's formulation is extended to construct a model of set theory based on the logic represented by the lattice of projections in an arbitrary von Neumann algebra. A transfer principle is established that enables us to transfer theorems of ZFC to their quantum counterparts holding in the model. The set of real numbers in the model is shown to be in one-to-one correspondence with the set of self-adjoint operators affiliated with the von Neumann algebra generated by the logic. Despite the difficulty pointed out by Takeuti that equality axioms do not generally hold in quantum set theory, it is shown that equality axioms hold for any real numbers in the model. It is also shown that any observational proposition in quantum mechanics can be represented by a corresponding statement for real numbers in the model with the truth value consistent with the standard formulation of quantum mechanics, and that the equality relation between two real numbers in the model is equivalent with the notion of perfect correlation between corresponding observables (self-adjoint operators) in quantum mechanics. The paper is concluded with some remarks on the relevance to quantum set theory of the choice of the implication connective in quantum logic.


Author(s):  
F. Bagarello ◽  
F. Gargano ◽  
S. Spagnolo ◽  
S. Triolo

In this paper, we undertake an analysis of the eigenstates of two non-self-adjoint operators q ^ and p ^ similar, in a suitable sense, to the self-adjoint position and momentum operators q ^ 0 and p ^ 0 usually adopted in ordinary quantum mechanics. In particular, we discuss conditions for these eigenstates to be biorthogonal distributions , and we discuss a few of their properties. We illustrate our results with two examples, one in which the similarity map between the self-adjoint and the non-self-adjoint is bounded, with bounded inverse, and the other in which this is not true. We also briefly propose an alternative strategy to deal with q ^ and p ^ , based on the so-called quasi *-algebras .


2012 ◽  
Vol 09 (02) ◽  
pp. 1260005 ◽  
Author(s):  
GIANNI CASSINELLI ◽  
PEKKA LAHTI

A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron–McLaren type. Our aim is to show how a theorem of M. Solér [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra23 (1995) 219–243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron–McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Solér's theorem in order to obtain a Hilbert space solution for the coordinatization problem.


1972 ◽  
Vol 50 (17) ◽  
pp. 2037-2047 ◽  
Author(s):  
M. Razavy

From the equation of motion and the canonical commutation relation for the position of a particle and its conjugate momentum, different first integrals of motion can be constructed. In addition to the proper Hamiltonian, there are other operators that can be considered as the generators of motion for the position operator (q-equivalent Hamiltonians). All of these operators have the same classical limit for the probability density of the coordinate of the particle, and many of them are symmetric and self-adjoint operators or have self-adjoint extensions. However, they do not satisfy the Heisenberg rule of quantization, and lead to incorrect commutation relations for velocity and position operators. Therefore, it is concluded that the energy first integral and the potential, rather than the equation of motion and the force law, are the physically significant operators in quantum mechanics.


2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Zhaohao Wang ◽  
Lan Shu ◽  
Xiuyong Ding

Rough set theory is a powerful tool for dealing with uncertainty, granularity, and incompleteness of knowledge in information systems. This paper discusses five types of existing neighborhood-based generalized rough sets. The concepts of minimal neighborhood description and maximal neighborhood description of an element are defined, and by means of the two concepts, the properties and structures of the third and the fourth types of neighborhood-based rough sets are deeply explored. Furthermore, we systematically study the covering reduction of the third and the fourth types of neighborhood-based rough sets in terms of the two concepts. Finally, two open problems proposed by Yun et al. (2011) are solved.


1965 ◽  
pp. 1-52
Author(s):  
Edwin Hewitt ◽  
Karl R. Stromberg
Keyword(s):  

2020 ◽  
Vol 2 (4) ◽  
pp. 600-616
Author(s):  
Andrea Oldofredi

It is generally accepted that quantum mechanics entails a revision of the classical propositional calculus as a consequence of its physical content. However, the universal claim according to which a new quantum logic is indispensable in order to model the propositions of every quantum theory is challenged. In the present essay, we critically discuss this claim by showing that classical logic can be rehabilitated in a quantum context by taking into account Bohmian mechanics. It will be argued, indeed, that such a theoretical framework provides the necessary conceptual tools to reintroduce a classical logic of experimental propositions by virtue of its clear metaphysical picture and its theory of measurement. More precisely, it will be shown that the rehabilitation of a classical propositional calculus is a consequence of the primitive ontology of the theory, a fact that is not yet sufficiently recognized in the literature concerning Bohmian mechanics. This work aims to fill this gap.


Author(s):  
J. Acacio de Barros ◽  
Federico Holik ◽  
Décio Krause

In this work, we discuss a formal way of dealing with the properties of contextual systems. Our approach is to assume that properties describing the same physical quantity, but belonging to different measurement contexts, are indistinguishable in a strong sense. To construct the formal theoretical structure, we develop a description using quasi-set theory, which is a set-theoretical framework built to describe collections of elements that violate Leibnitz's principle of identity of indiscernibles. This framework allows us to consider a new ontology in order to study the properties of quantum systems. This article is part of the theme issue ‘Contextuality and probability in quantum mechanics and beyond’.


Sign in / Sign up

Export Citation Format

Share Document