scholarly journals Fractal Stochastic Processes on Thin Cantor-Like Sets

Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 613
Author(s):  
Alireza Khalili Golmankhaneh ◽  
Renat Timergalievich Sibatov

We review the basics of fractal calculus, define fractal Fourier transformation on thin Cantor-like sets and introduce fractal versions of Brownian motion and fractional Brownian motion. Fractional Brownian motion on thin Cantor-like sets is defined with the use of non-local fractal derivatives. The fractal Hurst exponent is suggested, and its relation with the order of non-local fractal derivatives is established. We relate the Gangal fractal derivative defined on a one-dimensional stochastic fractal to the fractional derivative after an averaging procedure over the ensemble of random realizations. That means the fractal derivative is the progenitor of the fractional derivative, which arises if we deal with a certain stochastic fractal.

Author(s):  
A. I. Chukwunezu ◽  
B. O. Osu ◽  
C. Olunkwa ◽  
C. N. Obi

The classical Black-Scholes equation driven by Brownian motion has no memory, therefore it is proper to replace the Brownian motion with fractional Brownian motion (FBM) which has long-memory due to the presence of the Hurst exponent. In this paper, the option pricing equation modeled by fractional Brownian motion is obtained. It is further reduced to a one-dimensional heat equation using Fourier transform and then a solution is obtained by applying the convolution theorem.


Author(s):  
Stuart A. Burrell

AbstractThis paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-$$\alpha $$ α fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.


Author(s):  
H. Maleki Almani ◽  
S.M. Hosseini ◽  
M. Tahmasebi

2006 ◽  
Vol 38 (02) ◽  
pp. 451-464 ◽  
Author(s):  
T. J. Kozubowski ◽  
M. M. Meerschaert ◽  
K. Podgórski

Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process. Used recently to model hydraulic conductivity fields in geophysics, it might also prove useful in modeling financial time series. Its one-dimensional distributions are scale mixtures of normal laws, where the stochastic variance has the generalized gamma distribution. These one-dimensional distributions are more peaked at the mode than is a Gaussian distribution, and their tails are heavier. In this paper we derive the basic properties of the process, including a new property called stochastic self-similarity. We also study the corresponding fractional Laplace noise, which may exhibit long-range dependence. Finally, we discuss practical methods for simulation.


The univariate Weierstrass–Mandelbrot function is generalized to many variables to model higher dimensional stochastic processes such as undersea topography. Because this topography is difficult to measure at small length scales over the many large regions that affect long-ranged acoustic propagation in the ocean, one needs a stochastic description that can be extrapolated to both large and small features. Fractal surfaces are a convenient framework for such a description. Computer-generated plots for the two-variable case are presented. It is shown that in the continuum limit the multivariate function is equivalent to the multivariate fractional Brownian motion.


2003 ◽  
Vol 14 (03) ◽  
pp. 351-365 ◽  
Author(s):  
PH. BRONLET ◽  
M. AUSLOOS

We have translated fractional Brownian motion (FBM) signals into a text based on two "letters", as if the signal fluctuations correspond to a constant stepsize random walk. We have applied the Zipf method to extract the ζ′ exponent relating the word frequency and its rank on a log–log plot. We have studied the variation of the Zipf exponent(s) giving the relationship between the frequency of occurrence of words of length m < 8 made of such two letters: ζ′ is varying as a power law in terms of m. We have also searched how the ζ′ exponent of the Zipf law is influenced by a linear trend and the resulting effect of its slope. We can distinguish finite size effects, and results depending whether the starting FBM is persistent or not, i.e., depending on the FBM Hurst exponent H. It seems then numerically proven that the Zipf exponent of a persistent signal is more influenced by the trend than that of an antipersistent signal. It appears that the conjectured law ζ′ = |2H - 1| only holds near H = 0.5. We have also introduced considerations based on the notion of a time dependent Zipf law along the signal.


2013 ◽  
Vol 16 (4) ◽  
Author(s):  
Danijela Rajter-Ćirić ◽  
Mirjana Stojanović

AbstractWe consider fractional derivatives of a Colombeau generalized stochastic process G defined on ℝn. We first introduce the Caputo fractional derivative of a one-dimensional Colombeau generalized stochastic process and then generalize the procedure to the Caputo partial fractional derivatives of a multidimensional Colombeau generalized stochastic process. To do so, the Colombeau generalized stochastic process G has to have a compact support. We prove that an arbitrary Caputo partial fractional derivative of a compactly supported Colombeau generalized stochastic process is a Colombeau generalized stochastic process itself, but not necessarily with a compact support.


2015 ◽  
Vol 2 (4) ◽  
pp. 969-987
Author(s):  
C. M. Hall

Abstract. Cosmic noise at 40 MHz is measured at Ny-Ålesund (79° N, 12° E) using a relative ionospheric opacity meter ("riometer"). A riometer is normally used to determine the degree to which cosmic noise is absorbed by the intervening ionosphere, giving an indication of ionization of the atmosphere at altitudes lower than generally monitored by other instruments. The usual course is to determine a "quiet-day" variation, this representing the galactic noise signal itself in the absence of absorption; the current signal is then subtracted from this to arrive at absorption expressed in dB. By a variety of means and assumptions, it is thereafter possible to estimate electron density profiles in the very lowest reaches of the ionosphere. Here however, the entire signal, i.e. including the cosmic noise itself will be examined and spectral characteristics identified. It will be seen that distinct spectral subranges are evident which can, in turn be identified with non-Gaussian processes characterized by generalized Hurst exponents, α. Considering all periods greater than 1 h, α &amp;approx; 1.24 – an indication of fractional Brownian motion, whereas for periods greater than 1 day α &amp;approx; 0.9 – approximately pink noise and just in the domain of fractional Gaussian noise. The results are compared with other physical processes suggesting that absorption of cosmic noise is characterized by a generalized Hurst exponent &amp;approx; 1.24 and thus non-persistent fractional Brownian motion, whereas generation of cosmic noise is characterized by a generalized Hurst exponent &amp;approx; 1.


Sign in / Sign up

Export Citation Format

Share Document