scholarly journals Existence Results for Caputo–Hadamard Nonlocal Fractional Multi-Order Boundary Value Problems

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 719
Author(s):  
Shahram Rezapour ◽  
Salim Ben Chikh ◽  
Abdelkader Amara ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon ◽  
...  

In this paper, we studied the existence results for solutions of a new class of the fractional boundary value problem in the Caputo–Hadamard settings. Moreover, boundary conditions of this fractional problem were formulated as the mixed multi-order Hadamard integro-derivative conditions. To prove the main existence results, we applied two well-known techniques in the topological degree and fixed point theories. Finally, we provide two examples to show the compatibility of our theoretical findings.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imed Bachar ◽  
Said Mesloub

We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the applications of the results.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Yumei Zou ◽  
Xin Zhang ◽  
Hongyu Li

In this article, some new Lyapunov-type inequalities for a class of fractional boundary value problems are established by use of the nonsymmetry property of Green’s function corresponding to appropriate boundary conditions.


2021 ◽  
Vol 5 (4) ◽  
pp. 136
Author(s):  
Chanakarn Kiataramkul ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this research work, we study a new class of ψ-Hilfer hybrid fractional integro-differential boundary value problems with three-point boundary conditions. An existence result is established by using a generalization of Krasnosel’skiĭ’s fixed point theorem. An example illustrating the main result is also constructed.


2021 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Muhammad Yaseen ◽  
Sadia Mumtaz ◽  
Reny George ◽  
Azhar Hussain

In this work, we explore the existence results for the hybrid Caputo–Hadamard fractional boundary value problem (CH-FBVP). The inclusion version of the proposed BVP with a three-point hybrid Caputo–Hadamard terminal conditions is also considered and the related existence results are provided. To achieve these goals, we utilize the well-known fixed point theorems attributed to Dhage for both BVPs. Moreover, we present two numerical examples to validate our analytical findings.


Author(s):  
John Graef ◽  
Lingju Kong ◽  
Qingkai Kong ◽  
Min Wang

AbstractThe authors study a type of nonlinear fractional boundary value problem with non-homogeneous integral boundary conditions. The existence and uniqueness of positive solutions are discussed. An example is given as the application of the results.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Yanping Guo ◽  
Wenying Wei ◽  
Yuerong Chen

We consider the multi-point discrete boundary value problem with one-dimensionalp-Laplacian operatorΔ(ϕp(Δu(t−1))+q(t)f(t,u(t),Δu(t))=0,t∈{1,…,n−1}subject to the boundary conditions:u(0)=0,u(n)=∑i=1m−2aiu(ξi), whereϕp(s)=|s|p−2s,p>1,ξi∈{2,…,n−2}with1<ξ1<⋯<ξm−2<n−1andai∈(0,1),0<∑i=1m−2ai<1. Using a new fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhanbing Bai ◽  
Yu Cheng ◽  
Sujing Sun

AbstractExistence results for the three-point fractional boundary value problem $$\begin{aligned}& D^{\alpha}x(t)= f \bigl(t, x(t), D^{\alpha-1} x(t) \bigr),\quad 0< t< 1, \\& x(0)=A, \qquad x(\eta)-x(1)=(\eta-1)B, \end{aligned}$$ Dαx(t)=f(t,x(t),Dα−1x(t)),0<t<1,x(0)=A,x(η)−x(1)=(η−1)B, are presented, where $A, B\in\mathbb{R}$A,B∈R, $0<\eta<1$0<η<1, $1<\alpha\leq2$1<α≤2. $D^{\alpha}x(t)$Dαx(t) is the conformable fractional derivative, and $f: [0, 1]\times\mathbb{R}^{2}\to\mathbb{R}$f:[0,1]×R2→R is continuous. The analysis is based on the nonlinear alternative of Leray–Schauder.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 910
Author(s):  
Bhuvaneswari Sambandham ◽  
Aghalaya S. Vatsala ◽  
Vinodh K. Chellamuthu

The generalized monotone iterative technique for sequential 2 q order Caputo fractional boundary value problems, which is sequential of order q, with mixed boundary conditions have been developed in our earlier paper. We used Green’s function representation form to obtain the linear iterates as well as the existence of the solution of the nonlinear problem. In this work, the numerical simulations for a linear nonhomogeneous sequential Caputo fractional boundary value problem for a few specific nonhomogeneous terms with mixed boundary conditions have been developed. This in turn will be used as a tool to develop the accurate numerical code for the linear nonhomogeneous sequential Caputo fractional boundary value problem for any nonhomogeneous terms with mixed boundary conditions. This numerical result will be essential to solving a nonlinear sequential boundary value problem, which arises from applications of the generalized monotone method.


2018 ◽  
Vol 34 (1) ◽  
pp. 57-64
Author(s):  
E. T. KARIMOV ◽  
◽  
K. SADARANGANI ◽  

In the present work, we discuss the existence of a unique positive solution of a boundary value problem for a nonlinear fractional order equation with singularity. Precisely, order of equation Dα 0+u(t) = f(t, u(t)) belongs to (3, 4] and f has a singularity at t = 0 and as a boundary conditions we use... Using a fixed point theorem, we prove the existence of unique positive solution of the considered problem.


Sign in / Sign up

Export Citation Format

Share Document