scholarly journals Investigation of X and Y Configuration Modal and Dynamic Response to Velocity Excitation of the Nanometer Resolution Linear Servo Motor Stage with Quasi-Industrial Guiding System in Quasi-Stable State

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 951
Author(s):  
Artur Piščalov ◽  
Edgaras Urbonas ◽  
Darius Vainorius ◽  
Jonas Matijošius ◽  
Artūras Kilikevičius

Research institutions and industrial enterprises demand high accuracy and precision positioning systems to fulfil cutting edge requirements of up-to-date technological processes in the field of metrology and optical fabrication. Linear motor system design with high performance mechanical guiding system and optical encoder ensures nanometer scale precision and constant static error, which can be calibrated by optical instruments. Mechanical guiding systems has its benefits in case of control theory and its stability; unfortunately, on the other hand, there exists high influence of structure geometry and tribological effects such as friction and modal response. The aforementioned effect cannot be straightforwardly identified during the assembly process. Degradation of dynamic units can be detected only after certain operating time. Single degree of freedom systems are well investigated and the effect of degradation can be predicted, but there exists a gap in the analysis of nanometer scale multi degree of freedom dynamic systems; therefore, novel diagnostic tools need to be proposed. In this particular paper, dual axes dynamic system analysis will be presented. The main idea is to decouple standard stacked XY stage and analyse X and Y configuration as two different configurations of the same object, while imitators of corresponding axes are absolutely solid and stationary. As storage and analysis of time domain data is not efficient, main attention will be concentrated on frequency domain data, while, of course, statistical and graphical representation of dynamic response will be presented. Transfer function, dynamic response, spectral analysis of dynamic response, and modal analysis will be presented and discussed. Based on the collected data and its analysis, comparison of X and Y responses to different velocity excitation will be presented. Finally, conclusions and recommendations of novel diagnostic way will be presented.

1992 ◽  
Vol 59 (3) ◽  
pp. 693-695 ◽  
Author(s):  
Pi-Cheng Tung

We consider the dynamic response of a single-degree-of-freedom system having two-sided amplitude constraints. The model consists of a piecewise-linear oscillator subjected to nonharmonic excitation. A simple impact rule employing a coefficient of restitution is used to characterize the almost instantaneous behavior of impact at the constraints. In this paper periodic and chaotic motions are found. The amplitude and stability of the periodic responses are determined and bifurcation analysis for these motions is carried out. Chaotic motions are found to exist over ranges of forcing periods.


1969 ◽  
Vol 59 (4) ◽  
pp. 1591-1598
Author(s):  
G. A. McLennan

Abstract An exact method is developed to eliminate the accelerometer error in dynamic response calculations for damped multi-degree of freedom systems. It is shown that the exact responses of a system can be obtained from the approximate responses which are conventionally calculated from an accelerogram. Response calculations were performed for two typical systems with three degrees of freedom for an assumed pseudo-earthquake. The results showed that the approximate responses may contain large errors, and that the correction developed effectively eliminates these errors.


1967 ◽  
Vol 35 (6) ◽  
pp. 351-361 ◽  
Author(s):  
J. F. Carney ◽  
L. F. Mockros ◽  
S. L. Lee

2019 ◽  
Vol 26 (1-2) ◽  
pp. 3-18
Author(s):  
Dao-Yong Wang ◽  
Wen-Can Zhang ◽  
Xia-Guang Zeng

In order to reduce the shock and vibration caused by torque disturbance of the gearbox in vehicles equipped with automatic transmission in the process of in situ shift, a novel semi-active hydraulic damping strut is introduced in the powertrain mounting system. The dynamic response evaluation indexes of vehicle in situ shift are put forward, and a 13-degree of freedom vehicle dynamic model including the semi-active hydraulic damping strut is established. The optimized dynamic characteristic parameters are acquired according to the principle of sharing force and the 13-degree of freedom vehicle dynamic model. The dynamic response evaluation indexes with and without the semi-active hydraulic damping strut are calculated using the 13-degree of freedom vehicle dynamic model in the process of in situ shift, and the calculation results show that the vibration of a vehicle can be reduced by the introduction of a semi-active hydraulic damping strut. Experiments are carried out to analyze the vibration response of the vehicle with and without a semi-active hydraulic damping strut, and the results show that the shock and vibration of the vehicle are reduced by introducing the semi-active hydraulic damping strut. The theoretical calculation values of active-side acceleration of the engine mount and torque strut are consistent with the experimental values, which show that the 13-degree of freedom vehicle dynamic model is reasonable.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiao-ang Liu ◽  
Yechi Ma ◽  
Chunlei Jiang ◽  
Xiuxiu Sun

In order to get the excitation forces of the vehicle powertrain, a six-degree-of-freedom model of the powertrain mounting system is established. Two different identification methods are presented. Through the test of mount dynamic response, the powertrain excitations identified through these two methods are compared. The results show that the powertrain excitations identified through two methods are basically the same, since the mount accelerations at the body side are really small. The identified excitation is verified by comparing the deformation of torque strut. The robustness analysis of the mount acceleration phase affecting the identification results is also proposed. Improving the accuracy of phase in test input is helpful to improve the accuracy of identification results.


1969 ◽  
Vol 184 (1) ◽  
pp. 83-98 ◽  
Author(s):  
R. Bell ◽  
A. De Pennington

The dynamic response of a cylinder drive is considerably influenced by the mechanical damping at the load. This paper discusses the use of acceleration and pressure transducer signals to introduce active damping into drives where the load mass is supported on anti-friction bearings, i.e. where the inherent mechanical damping is a minimum. The analysis is based on the use of a linearized model. The significance of the model and the system analysis is substantiated by the results of experiments carried out to assess the merits of these forms of minor loop compensation.


2012 ◽  
Vol 569 ◽  
pp. 758-762
Author(s):  
Guang Chao Liu ◽  
Ming Jun Liu

In high speed and accuracy positioning systems, torque control mode can achieve much better dynamic response and easy tuning of PID parameters compared to those of position and speed control modes. By adopting and implementing the improved PID control law with feed forward algorithm, the control system can provide much higher performance at high speed movement.


Sign in / Sign up

Export Citation Format

Share Document