scholarly journals Iterative Design for the Common Solution of Monotone Inclusions and Variational Inequalities

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1504
Author(s):  
Li Wei ◽  
Xin-Wang Shen ◽  
Ravi P. Agarwal

Some new forward–backward multi-choice iterative algorithms with superposition perturbations are presented in a real Hilbert space for approximating common solution of monotone inclusions and variational inequalities. Some new ideas of constructing iterative elements can be found and strong convergence theorems are proved under mild restrictions, which extend and complement some already existing work.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 466
Author(s):  
Li Wei ◽  
Yingzi Shang ◽  
Ravi P. Agarwal

Some new inertial forward-backward projection iterative algorithms are designed in a real Hilbert space. Under mild assumptions, some strong convergence theorems for common zero points of the sum of two kinds of infinitely many accretive mappings are proved. New projection sets are constructed which provide multiple choices of the iterative sequences. Some already existing iterative algorithms are demonstrated to be special cases of ours. Some inequalities of metric projection and real number sequences are widely used in the proof of the main results. The iterative algorithms have also been modified and extended from pure discussion on the sum of accretive mappings or pure study on variational inequalities to that for both, which complements the previous work. Moreover, the applications of the abstract results on nonlinear capillarity systems are exemplified.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Songnian He ◽  
Caiping Yang

Consider the variational inequalityVI(C,F)of finding a pointx*∈Csatisfying the property〈Fx*,x-x*〉≥0, for allx∈C, whereCis the intersection of finite level sets of convex functions defined on a real Hilbert spaceHandF:H→His anL-Lipschitzian andη-strongly monotone operator. Relaxed and self-adaptive iterative algorithms are devised for computing the unique solution ofVI(C,F). Since our algorithm avoids calculating the projectionPC(calculatingPCby computing several sequences of projections onto half-spaces containing the original domainC) directly and has no need to know any information of the constantsLandη, the implementation of our algorithm is very easy. To prove strong convergence of our algorithms, a new lemma is established, which can be used as a fundamental tool for solving some nonlinear problems.



2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Bin-Chao Deng ◽  
Tong Chen ◽  
Zhi-Fang Li

Let{Ti}i=1NbeNstrictly pseudononspreading mappings defined on closed convex subsetCof a real Hilbert spaceH. Consider the problem of finding a common fixed point of these mappings and introduce cyclic algorithms based on general viscosity iteration method for solving this problem. We will prove the strong convergence of these cyclic algorithm. Moreover, the common fixed point is the solution of the variational inequality〈(γf-μB)x*,v-x*〉≤0,∀v∈⋂i=1NFix(Ti).



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Long He ◽  
Yun-Ling Cui ◽  
Lu-Chuan Ceng ◽  
Tu-Yan Zhao ◽  
Dan-Qiong Wang ◽  
...  

AbstractIn a real Hilbert space, let GSVI and CFPP represent a general system of variational inequalities and a common fixed point problem of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new subgradient extragradient implicit rule, we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solution set of another monotone equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the proposed algorithms are established under the mild assumptions, and they are also applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and FPP stand for a variational inequality problem and a fixed point problem, respectively.



2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Rabian Wangkeeree ◽  
Pakkapon Preechasilp

We introduce the new iterative methods for finding a common solution set of monotone, Lipschitz-type continuous equilibrium problems and the set of fixed point of nonexpansive mappings which is a unique solution of some variational inequality. We prove the strong convergence theorems of such iterative scheme in a real Hilbert space. The main result extends various results existing in the current literature.



Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1189 ◽  
Author(s):  
Yonghong Yao ◽  
Mihai Postolache ◽  
Jen-Chih Yao

In this paper, we are interested in the pseudomonotone variational inequalities and fixed point problem of pseudocontractive operators in Hilbert spaces. An iterative algorithm has been constructed for finding a common solution of the pseudomonotone variational inequalities and fixed point of pseudocontractive operators. Strong convergence analysis of the proposed procedure is given. Several related corollaries are included.



Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 115 ◽  
Author(s):  
Nopparat Wairojjana ◽  
Nuttapol Pakkaranang ◽  
Habib ur Rehman ◽  
Nattawut Pholasa ◽  
Tiwabhorn Khanpanuk

A number of applications from mathematical programmings, such as minimax problems, penalization methods and fixed-point problems can be formulated as a variational inequality model. Most of the techniques used to solve such problems involve iterative algorithms, and that is why, in this paper, we introduce a new extragradient-like method to solve the problems of variational inequalities in real Hilbert space involving pseudomonotone operators. The method has a clear advantage because of a variable stepsize formula that is revised on each iteration based on the previous iterations. The key advantage of the method is that it works without the prior knowledge of the Lipschitz constant. Strong convergence of the method is proved under mild conditions. Several numerical experiments are reported to show the numerical behaviour of the method.



2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Yan Tang

We introduce two proximal iterative algorithms with errors which converge strongly to the common solution of certain variational inequality problems for a finite family of pseudocontractive mappings and a finite family of monotone mappings. The strong convergence theorems are obtained under some mild conditions. Our theorems extend and unify some of the results that have been proposed for this class of nonlinear mappings.



2012 ◽  
Vol 2012 ◽  
pp. 1-32
Author(s):  
Lu-Chuan Ceng ◽  
Ching-Feng Wen

We investigate the problem of finding a common solution of a general system of variational inequalities, a variational inclusion, and a fixed-point problem of a strictly pseudocontractive mapping in a real Hilbert space. Motivated by Nadezhkina and Takahashi's hybrid-extragradient method, we propose and analyze new hybrid-extragradient iterative algorithm for finding a common solution. It is proven that three sequences generated by this algorithm converge strongly to the same common solution under very mild conditions. Based on this result, we also construct an iterative algorithm for finding a common fixed point of three mappings, such that one of these mappings is nonexpansive, and the other two mappings are strictly pseudocontractive mappings.



2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Bin-Chao Deng ◽  
Tong Chen

LetHbe a real Hilbert space. LetT1,T2:H→Hbek1-,k2-strictly pseudononspreading mappings; letαnandβnbe two real sequences in (0,1). For givenx0∈H, the sequencexnis generated iteratively byxn+1=βnxn+1-βnTw1αnγfxn+I-μαnBTw2xn,∀n∈N, whereTwi=1−wiI+wiTiwithi=1,2andB:H→His strongly monotone and Lipschitzian. Under some mild conditions on parametersαnandβn, we prove that the sequencexnconverges strongly to the setFixT1∩FixT2of fixed points of a pair of strictly pseudononspreading mappingsT1andT2.



Sign in / Sign up

Export Citation Format

Share Document