scholarly journals Path Analysis for Hybrid Rigid–Flexible Mechanisms

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1869
Author(s):  
Oscar Altuzarra ◽  
David Manuel Solanillas ◽  
Enrique Amezua ◽  
Victor Petuya

Hybrid rigid–flexible mechanisms are a type of compliant mechanism that combines rigid and flexible elements, being that their mobility is due to rigid-body joints and the relative flexibility of bendable rods. Two of the modeling methods of flexible rods are the Cosserat rod model and its simplification, the Kirchhoff rod model. Both of them present a system of differential equations that must be solved in conjunction with the boundary constraints of the rod, leading to a boundary value problem (BVP). In this work, two methods to solve this BVP are applied to analyze the influence of external loads in the movement of hybrid compliant mechanisms. First, a shooting method (SM) is used to integrate directly the shape of the flexible rod and the forces that appear in it. Then, an integration with elliptic integrals (EI) is carried out to solve the workspace of the compliant element, considering its buckling mode. Applying both methods, an algorithm that obtains the locus of all possible trajectories of the mechanism’s coupler point, and detects the buckling mode change, is developed. This algorithm also allows calculating all possible circuits of the mechanism. Thus, the performance of this method within the path analysis of mechanisms is demonstrated.

Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract Compliant mechanisms gain some or all of their mobility from the flexibility of their members rather than from rigid-body joints only. More efficient and usable analysis and design techniques are needed before the advantages of compliant mechanisms can be fully utilized. In an earlier work, a pseudo-rigid-body model concept, corresponding to an end-loaded geometrically nonlinear, large-deflection beam, was developed to help fulfill this need. In this paper, the pseudo-rigid-body equivalent spring stiffness is investigated and new modeling equations are proposed. The result is a simplified method of modeling the force/deflection relationships of large-deflection members in compliant mechanisms. Flexible segments which maintain a constant end angle are discussed, and an example mechanism is analyzed. The resulting models are valuable in the visualization of the motion of large-deflection systems, as well as the quick and efficient evaluation and optimization of compliant mechanism designs.


2005 ◽  
Vol 127 (4) ◽  
pp. 760-765 ◽  
Author(s):  
Yue-Qing Yu ◽  
Larry L. Howell ◽  
Craig Lusk ◽  
Ying Yue ◽  
Mao-Gen He

Based on the principle of dynamic equivalence, a new dynamic model of compliant mechanisms is developed using the pseudo-rigid-body model. The dynamic equation of general planar compliant mechanisms is derived. The natural frequency of a compliant mechanism is obtained in the example of a planar compliant parallel-guiding mechanism. The numerical results show the effectiveness and advantage of the proposed method compared with the methods of FEA and flexible mechanisms.


1996 ◽  
Vol 118 (1) ◽  
pp. 126-131 ◽  
Author(s):  
L. L. Howell ◽  
A. Midha ◽  
T. W. Norton

Compliant mechanisms gain some or all of their mobility from the flexibility of their members rather than from rigid-body joints only. More efficient and usable analysis and design techniques are needed before the advantages of compliant mechanisms can be fully utilized. In an earlier work, a pseudo-rigid-body model concept, corresponding to an end-loaded geometrically nonlinear, large-deflection beam, was developed to help fulfill this need. In this paper, the pseudo-rigid-body equivalent spring stiffness is investigated and new modeling equations are proposed. The result is a simplified method of modeling the force/deflection relationships of large-deflection members in compliant mechanisms. The resulting models are valuable in the visualization of the motion of large-deflection systems, as well as the quick and efficient evaluation and optimization of compliant mechanism designs.


Author(s):  
Ashok Midha ◽  
Tony W. Norton ◽  
Larry L. Howell

Abstract A compliant mechanism is one which gains all or part of its mobility from the relative flexibility of its members rather than from rigid-body joints only. Compliant mechanisms offer clear advantages, such as need for fewer parts, less wear, noise and backlash due to clearances, when compared to rigid-body mechanisms performing similar functions. This important field is expected to undergo significant growth as materials with superior properties are developed. In the development of compliant mechanisms, the establishment of nomenclature and classification is of primary importance. This paper discusses common representations, i.e. names and diagrams, for a compliant mechanism. Names and diagrams will be shown to be similar because they represent “abstractions” of the same mechanism. The concept of “levels of abstraction” is introduced, and common levels of abstraction are identified. The relevance of this concept to the naming of mechanisms is shown by applying it to both rigid-body and compliant mechanism examples. Nomenclature is proposed for several of the common levels of abstraction, and issues involved in naming mechanisms are discussed. Finally, a discussion of synthesis types is presented, as are the advantages, disadvantages, and issues involved in the synthesis of a compliant mechanism.


Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.


Author(s):  
Femke M. Morsch ◽  
Just L. Herder

The objective of this paper is to design a generic zero stiffness compliant joint. This compliant joint could be used as a generic construction element in a compliant mechanism. To avoid the spring-back behavior of conventional compliant joints, the principle of static balancing is applied, implying that for each position of the joint the total potential energy should be constant. To this end, a conventional balanced mechanism, consisting of two pivoted bodies which are balanced with two zero-free-length springs, is taken as an initial concept. The joint is replaced by a compliant cross-axis flexural pivot and each spring is replaced by a pair of compliant leaf springs. For both parts an analytic model was implemented and a configuration with the lowest energy fluctuation was found through optimization. A FEA model was used to verify the analytic model of the optimized design. A prototype was manufactured and tested. Both the FEA model and the experiment confirm the reduction of the needed moment to rotate the compliant joint. The experiment shows the balanced compliant joint is not completely balanced but the moment required to rotate the joint is reduced by 70%. Thus, a statically balanced compliant generic joint element was designed which bears great promise in designing statically balanced compliant mechanisms and making this accessible to any designer.


1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
Girish Krishnan ◽  
Charles Kim ◽  
Sridhar Kota

Visualizing load flow aids in conceptual design synthesis of machine components. In this paper, we present a mathematical framework to visualize load flow in compliant mechanisms and structures. This framework uses the concept of transferred forces to quantify load flow from input to the output of a compliant mechanism. The key contribution of this paper is the identification a fundamental building block known as the Load-Transmitter Constraint (LTC) set, which enables load flow in a particular direction. The transferred force in each LTC set is shown to be independent of successive LTC sets that are attached to it. This enables a continuous visualization of load flow from the input to the output. Furthermore, we mathematically relate the load flow with the deformation behavior of the mechanism. We can thus explain the deformation behavior of a number of compliant mechanisms from literature by identifying its LTC sets to visualize load flow. This method can also be used to visualize load flow in optimal stiff structure topologies. The insight obtained from this visualization tool facilitates a systematic building block based design methodology for compliant mechanisms and structural topologies.


2001 ◽  
Author(s):  
Hima Maddisetty ◽  
Mary Frecker

Abstract Piezoceramic actuators have gained widespread use due to their desirable qualities of high force, high bandwidth, and high energy density. Compliant mechanisms can be designed for maximum stroke amplification of piezoceramic actuators using topology optimization. In this paper, the mechanical efficiency and other performance metrics of such compliant mechanism/actuator systems are studied. Various definitions of efficiency and other performance metrics of actuators with amplification mechanisms from the literature are reviewed. These metrics are then applied to two compliant mechanism example problems and the effect of the stiffness of the external load is investigated.


Author(s):  
A. Saxena ◽  
Steven N. Kramer

Abstract Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads for which, traditional methods of deflection analysis do not apply Nonlinearities introduced by these large deflections make the system comprising such members difficult to solve Parametric deflection approximations are then deemed helpful in the analysis and synthesis of compliant mechanisms This is accomplished by seeking the pseudo-rigid-body model representation of the compliant mechanism A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads with positive end moments A numerical integration technique using quadrature formulae has been employed to solve the nonlinear Bernoulli-Euler beam equation for the tip deflection Implementation of this scheme is relatively simpler than the elliptic integral formulation and provides nearly accurate results Results of the numerical integration scheme are compared with the beam finite element analysis An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Sign in / Sign up

Export Citation Format

Share Document