scholarly journals LAE-GAN-Based Face Image Restoration for Low-Light Age Estimation

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2329
Author(s):  
Se Hyun Nam ◽  
Yu Hwan Kim ◽  
Jiho Choi ◽  
Seung Baek Hong ◽  
Muhammad Owais ◽  
...  

Age estimation is applicable in various fields, and among them, research on age estimation using human facial images, which are the easiest to acquire, is being actively conducted. Since the emergence of deep learning, studies on age estimation using various types of convolutional neural networks (CNN) have been conducted, and they have resulted in good performances, as clear images with high illumination were typically used in these studies. However, human facial images are typically captured in low-light environments. Age information can be lost in facial images captured in low-illumination environments, where noise and blur generated by the camera in the captured image reduce the age estimation performance. No study has yet been conducted on age estimation using facial images captured under low light. In order to overcome this problem, this study proposes a new generative adversarial network for low-light age estimation (LAE-GAN), which compensates for the brightness of human facial images captured in low-light environments, and a CNN-based age estimation method in which compensated images are input. When the experiment was conducted using the MORPH, AFAD, and FG-NET databases—which are open databases—the proposed method exhibited more accurate age estimation performance and brightness compensation in low-light images compared to state-of-the-art methods.

Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Author(s):  
Wenchao Du ◽  
Hu Chen ◽  
Hongyu Yang ◽  
Yi Zhang

AbstractGenerative adversarial network (GAN) has been applied for low-dose CT images to predict normal-dose CT images. However, the undesired artifacts and details bring uncertainty to the clinical diagnosis. In order to improve the visual quality while suppressing the noise, in this paper, we mainly studied the two key components of deep learning based low-dose CT (LDCT) restoration models—network architecture and adversarial loss, and proposed a disentangled noise suppression method based on GAN (DNSGAN) for LDCT. Specifically, a generator network, which contains the noise suppression and structure recovery modules, is proposed. Furthermore, a multi-scaled relativistic adversarial loss is introduced to preserve the finer structures of generated images. Experiments on simulated and real LDCT datasets show that the proposed method can effectively remove noise while recovering finer details and provide better visual perception than other state-of-the-art methods.


Author(s):  
Lingyu Yan ◽  
Jiarun Fu ◽  
Chunzhi Wang ◽  
Zhiwei Ye ◽  
Hongwei Chen ◽  
...  

AbstractWith the development of image recognition technology, face, body shape, and other factors have been widely used as identification labels, which provide a lot of convenience for our daily life. However, image recognition has much higher requirements for image conditions than traditional identification methods like a password. Therefore, image enhancement plays an important role in the process of image analysis for images with noise, among which the image of low-light is the top priority of our research. In this paper, a low-light image enhancement method based on the enhanced network module optimized Generative Adversarial Networks(GAN) is proposed. The proposed method first applied the enhancement network to input the image into the generator to generate a similar image in the new space, Then constructed a loss function and minimized it to train the discriminator, which is used to compare the image generated by the generator with the real image. We implemented the proposed method on two image datasets (DPED, LOL), and compared it with both the traditional image enhancement method and the deep learning approach. Experiments showed that our proposed network enhanced images have higher PNSR and SSIM, the overall perception of relatively good quality, demonstrating the effectiveness of the method in the aspect of low illumination image enhancement.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 414 ◽  
Author(s):  
Traian Caramihale ◽  
Dan Popescu ◽  
Loretta Ichim

The detection of human emotions has applicability in various domains such as assisted living, health monitoring, domestic appliance control, crowd behavior tracking real time, and emotional security. The paper proposes a new system for emotion classification based on a generative adversarial network (GAN) classifier. The generative adversarial networks have been widely used for generating realistic images, but the classification capabilities have been vaguely exploited. One of the main advantages is that by using the generator, we can extend our testing dataset and add more variety to each of the seven emotion classes we try to identify. Thus, the novelty of our study consists in increasing the number of classes from N to 2N (in the learning phase) by considering real and fake emotions. Facial key points are obtained from real and generated facial images, and vectors connecting them with the facial center of gravity are used by the discriminator to classify the image as one of the 14 classes of interest (real and fake for seven emotions). As another contribution, real images from different emotional classes are used in the generation process unlike the classical GAN approach which generates images from simple noise arrays. By using the proposed method, our system can classify emotions in facial images regardless of gender, race, ethnicity, age and face rotation. An accuracy of 75.2% was obtained on 7000 real images (14,000, also considering the generated images) from multiple combined facial datasets.


Author(s):  
Han Xu ◽  
Pengwei Liang ◽  
Wei Yu ◽  
Junjun Jiang ◽  
Jiayi Ma

In this paper, we propose a new end-to-end model, called dual-discriminator conditional generative adversarial network (DDcGAN), for fusing infrared and visible images of different resolutions. Unlike the pixel-level methods and existing deep learning-based methods, the fusion task is accomplished through the adversarial process between a generator and two discriminators, in addition to the specially designed content loss. The generator is trained to generate real-like fused images to fool discriminators. The two discriminators are trained to calculate the JS divergence between the probability distribution of downsampled fused images and infrared images, and the JS divergence between the probability distribution of gradients of fused images and gradients of visible images, respectively. Thus, the fused images can compensate for the features that are not constrained by the single content loss. Consequently, the prominence of thermal targets in the infrared image and the texture details in the visible image can be preserved or even enhanced in the fused image simultaneously. Moreover, by constraining and distinguishing between the downsampled fused image and the low-resolution infrared image, DDcGAN can be preferably applied to the fusion of different resolution images. Qualitative and quantitative experiments on publicly available datasets demonstrate the superiority of our method over the state-of-the-art.


2020 ◽  
Vol 34 (06) ◽  
pp. 10402-10409
Author(s):  
Tianying Wang ◽  
Wei Qi Toh ◽  
Hao Zhang ◽  
Xiuchao Sui ◽  
Shaohua Li ◽  
...  

Robotic drawing has become increasingly popular as an entertainment and interactive tool. In this paper we present RoboCoDraw, a real-time collaborative robot-based drawing system that draws stylized human face sketches interactively in front of human users, by using the Generative Adversarial Network (GAN)-based style transfer and a Random-Key Genetic Algorithm (RKGA)-based path optimization. The proposed RoboCoDraw system takes a real human face image as input, converts it to a stylized avatar, then draws it with a robotic arm. A core component in this system is the AvatarGAN proposed by us, which generates a cartoon avatar face image from a real human face. AvatarGAN is trained with unpaired face and avatar images only and can generate avatar images of much better likeness with human face images in comparison with the vanilla CycleGAN. After the avatar image is generated, it is fed to a line extraction algorithm and converted to sketches. An RKGA-based path optimization algorithm is applied to find a time-efficient robotic drawing path to be executed by the robotic arm. We demonstrate the capability of RoboCoDraw on various face images using a lightweight, safe collaborative robot UR5.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zishu Gao ◽  
Guodong Yang ◽  
En Li ◽  
Tianyu Shen ◽  
Zhe Wang ◽  
...  

There are a large number of insulators on the transmission line, and insulator damage will have a major impact on power supply security. Image-based segmentation of the insulators in the power transmission lines is a premise and also a critical task for power line inspection. In this paper, a modified conditional generative adversarial network for insulator pixel-level segmentation is proposed. The generator is reconstructed by encoder-decoder layers with asymmetric convolution kernel which can simplify the network complexity and extract more kinds of feature information. The discriminator is composed of a fully convolutional network based on patchGAN and learns the loss to train the generator. It is verified in experiments that the proposed method has better performances on mIoU and computational efficiency than Pix2pix, SegNet, and other state-of-the-art networks.


2019 ◽  
Vol 1 (2) ◽  
pp. 99-120 ◽  
Author(s):  
Tongtao Zhang ◽  
Heng Ji ◽  
Avirup Sil

We propose a new framework for entity and event extraction based on generative adversarial imitation learning—an inverse reinforcement learning method using a generative adversarial network (GAN). We assume that instances and labels yield to various extents of difficulty and the gains and penalties (rewards) are expected to be diverse. We utilize discriminators to estimate proper rewards according to the difference between the labels committed by the ground-truth (expert) and the extractor (agent). Our experiments demonstrate that the proposed framework outperforms state-of-the-art methods.


2021 ◽  
Vol 13 (19) ◽  
pp. 3971
Author(s):  
Wenxiang Chen ◽  
Yingna Li ◽  
Zhengang Zhao

Insulator detection is one of the most significant issues in high-voltage transmission line inspection using unmanned aerial vehicles (UAVs) and has attracted attention from researchers all over the world. The state-of-the-art models in object detection perform well in insulator detection, but the precision is limited by the scale of the dataset and parameters. Recently, the Generative Adversarial Network (GAN) was found to offer excellent image generation. Therefore, we propose a novel model called InsulatorGAN based on using conditional GANs to detect insulators in transmission lines. However, due to the fixed categories in datasets such as ImageNet and Pascal VOC, the generated insulator images are of a low resolution and are not sufficiently realistic. To solve these problems, we established an insulator dataset called InsuGenSet for model training. InsulatorGAN can generate high-resolution, realistic-looking insulator-detection images that can be used for data expansion. Moreover, InsulatorGAN can be easily adapted to other power equipment inspection tasks and scenarios using one generator and multiple discriminators. To give the generated images richer details, we also introduced a penalty mechanism based on a Monte Carlo search in InsulatorGAN. In addition, we proposed a multi-scale discriminator structure based on a multi-task learning mechanism to improve the quality of the generated images. Finally, experiments on the InsuGenSet and CPLID datasets demonstrated that our model outperforms existing state-of-the-art models by advancing both the resolution and quality of the generated images as well as the position of the detection box in the images.


Sign in / Sign up

Export Citation Format

Share Document