scholarly journals Robust Algorithms for Change-Point Regressions Using the t-Distribution

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2394
Author(s):  
Kang-Ping Lu ◽  
Shao-Tung Chang

Regression models with change-points have been widely applied in various fields. Most methodologies for change-point regressions assume Gaussian errors. For many real data having longer-than-normal tails or atypical observations, the use of normal errors may unduly affect the fit of change-point regression models. This paper proposes two robust algorithms called EMT and FCT for change-point regressions by incorporating the t-distribution with the expectation and maximization algorithm and the fuzzy classification procedure, respectively. For better resistance to high leverage outliers, we introduce a modified version of the proposed method, which fits the t change-point regression model to the data after moderately pruning high leverage points. The selection of the degrees of freedom is discussed. The robustness properties of the proposed methods are also analyzed and validated. Simulation studies show the effectiveness and resistance of the proposed methods against outliers and heavy-tailed distributions. Extensive experiments demonstrate the preference of the t-based approach over normal-based methods for better robustness and computational efficiency. EMT and FCT generally work well, and FCT always performs better for less biased estimates, especially in cases of data contamination. Real examples show the need and the practicability of the proposed method.

Author(s):  
Kang-Ping Lu ◽  
Shao-Tung Chang

This article presents a robust fuzzy procedure for estimating change-point regression models. We propose incorporating the fuzzy change-point algorithm with the M-estimation technique for robust estimations. The fuzzy c partitions concept is embedded into the change-point regression model so the fuzzy c-regressions and fuzzy c-means clustering can be employed to obtain the estimates of change-points and regression parameters. The M estimation with a robust criterion is used to make the estimators robust to the presence of outliers and heavy-tailed distributions. We create two robust algorithms named FCH and FCT by using Huber’s and Tukey’s functions as the robust criterion respectively. Extensive experiments with numerical and real examples are provided for demonstrating the effectiveness and the superiority of the proposed algorithms. The experimental results show the proposed algorithms are resistant to atypical observations and outperform the existing methods. The proposed FCH and FCT are generally comparable but FCT performs better in the presence of extremely high leverage outliers and heavy-tailed distributions. Real data applications show the practical usefulness of the proposed method.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Mohsen Maleki ◽  
Javier Contreras-Reyes ◽  
Mohammad Mahmoudi

In this paper, we examine the finite mixture (FM) model with a flexible class of two-piece distributions based on the scale mixtures of normal (TP-SMN) family components. This family allows the development of a robust estimation of FM models. The TP-SMN is a rich class of distributions that covers symmetric/asymmetric and light/heavy tailed distributions. It represents an alternative family to the well-known scale mixtures of the skew normal (SMSN) family studied by Branco and Dey (2001). Also, the TP-SMN covers the SMN (normal, t, slash, and contaminated normal distributions) as the symmetric members and two-piece versions of them as asymmetric members. A key feature of this study is using a suitable hierarchical representation of the family to obtain maximum likelihood estimates of model parameters via an EM-type algorithm. The performances of the proposed robust model are demonstrated using simulated and real data, and then compared to other finite mixture of SMSN models.


2019 ◽  
Vol 7 (1) ◽  
pp. 394-417
Author(s):  
Aboubacrène Ag Ahmad ◽  
El Hadji Deme ◽  
Aliou Diop ◽  
Stéphane Girard

AbstractWe introduce a location-scale model for conditional heavy-tailed distributions when the covariate is deterministic. First, nonparametric estimators of the location and scale functions are introduced. Second, an estimator of the conditional extreme-value index is derived. The asymptotic properties of the estimators are established under mild assumptions and their finite sample properties are illustrated both on simulated and real data.


2016 ◽  
Vol 33 (6) ◽  
pp. 1352-1386 ◽  
Author(s):  
Herold Dehling ◽  
Daniel Vogel ◽  
Martin Wendler ◽  
Dominik Wied

For a bivariate time series ((Xi ,Yi))i=1,...,n, we want to detect whether the correlation between Xi and Yi stays constant for all i = 1,...n. We propose a nonparametric change-point test statistic based on Kendall’s tau. The asymptotic distribution under the null hypothesis of no change follows from a new U-statistic invariance principle for dependent processes. Assuming a single change-point, we show that the location of the change-point is consistently estimated. Kendall’s tau possesses a high efficiency at the normal distribution, as compared to the normal maximum likelihood estimator, Pearson’s moment correlation. Contrary to Pearson’s correlation coefficient, it shows no loss in efficiency at heavy-tailed distributions, and is therefore particularly suited for financial data, where heavy tails are common. We assume the data ((Xi ,Yi))i=1,...,n to be stationary and P-near epoch dependent on an absolutely regular process. The P-near epoch dependence condition constitutes a generalization of the usually considered Lp-near epoch dependence allowing for arbitrarily heavy-tailed data. We investigate the test numerically, compare it to previous proposals, and illustrate its application with two real-life data examples.


2019 ◽  
Vol 09 (04) ◽  
pp. 2150001
Author(s):  
Yong He ◽  
Hao Sun ◽  
Jiadong Ji ◽  
Xinsheng Zhang

In this paper, we innovatively propose an extremely flexible semi-parametric regression model called Multi-response Trans-Elliptical Regression (MTER) Model, which can capture the heavy-tail characteristic and tail dependence of both responses and covariates. We investigate the feature screening procedure for the MTER model, in which Kendall’ tau-based canonical correlation estimators are proposed to characterize the correlation between each transformed predictor and the multivariate transformed responses. The main idea is to substitute the classical canonical correlation ranking index in [X. B. Kong, Z. Liu, Y. Yao and W. Zhou, Sure screening by ranking the canonical correlations, TEST 26 (2017) 1–25] by a carefully constructed non-parametric version. The sure screening property and ranking consistency property are established for the proposed procedure. Simulation results show that the proposed method is much more powerful to distinguish the informative features from the unimportant ones than some state-of-the-art competitors, especially for heavy-tailed distributions and high-dimensional response. At last, a real data example is given to illustrate the effectiveness of the proposed procedure.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xuedong Chen ◽  
Qianying Zeng ◽  
Qiankun Song

An extension of some standard likelihood and variable selection criteria based on procedures of linear regression models under the skew-normal distribution or the skew-tdistribution is developed. This novel class of models provides a useful generalization of symmetrical linear regression models, since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions. A generalized expectation-maximization algorithm is developed for computing thel1penalized estimator. Efficacy of the proposed methodology and algorithm is demonstrated by simulated data.


2020 ◽  
Vol 8 (1) ◽  
pp. 373-395
Author(s):  
Courtney Vanderford ◽  
Yongli Sang ◽  
Xin Dang

AbstractStandard Gini correlation plays an important role in measuring the dependence between random variables with heavy-tailed distributions. It is based on the covariance between one variable and the rank of the other. Hence for each pair of random variables, there are two Gini correlations and they are not equal in general, which brings a substantial difficulty in interpretation. Recently, Sang et al (2016) proposed a symmetric Gini correlation based on the joint spatial rank function with a computation cost of O(n2) where n is the sample size. In this paper, we study two symmetric and computationally efficient Gini correlations with the computational complexity of O(n log n). The properties of the new symmetric Gini correlations are explored. The influence function approach is utilized to study the robustness and the asymptotic behavior of these correlations. The asymptotic relative efficiencies are considered to compare several popular correlations under symmetric distributions with different tail-heaviness as well as an asymmetric log-normal distribution. Simulation and real data application are conducted to demonstrate the desirable performance of the two new symmetric Gini correlations.


Sign in / Sign up

Export Citation Format

Share Document