scholarly journals Integrate-and-Differentiate Approach to Nonlinear System Identification

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 2999
Author(s):  
Artur I. Karimov ◽  
Ekaterina Kopets ◽  
Erivelton G. Nepomuceno ◽  
Denis Butusov

In this paper, we consider a problem of parametric identification of a piece-wise linear mechanical system described by ordinary differential equations. We reconstruct the phase space of the investigated system from accelerometer data and perform parameter identification using iteratively reweighted least squares. Two key features of our study are as follows. First, we use a differentiated governing equation containing acceleration and velocity as the main independent variables instead of the conventional governing equation in velocity and position. Second, we modify the iteratively reweighted least squares method by including an auxiliary reclassification step into it. The application of this method allows us to improve the identification accuracy through the elimination of classification errors needed for parameter estimation of piece-wise linear differential equations. Simulation of the Duffing-like chaotic mechanical system and experimental study of an aluminum beam with asymmetric joint show that the proposed approach is more accurate than state-of-the-art solutions.

Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.


2016 ◽  
Vol 24 (5) ◽  
pp. 1168-1175
Author(s):  
张振杰 ZHANG Zhen-jie ◽  
郝向阳 HAO Xiang-yang ◽  
程传奇 CHENG Chuan-qi ◽  
黄忠义 HUANG Zhong-yi

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 479 ◽  
Author(s):  
Bogdan Căruntu ◽  
Constantin Bota ◽  
Marioara Lăpădat ◽  
Mădălina Paşca

This paper applies the Polynomial Least Squares Method (PLSM) to the case of fractional Lane-Emden differential equations. PLSM offers an analytical approximate polynomial solution in a straightforward way. A comparison with previously obtained results proves how accurate the method is.


Filomat ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 1025-1033 ◽  
Author(s):  
F.A. Aliev ◽  
N.A. Ismailov ◽  
A.A. Namazov ◽  
N.A. Safarova ◽  
M.F. Rajabov ◽  
...  

A dynamic system, when the motion of the object is described by the system of nonlinear ordinary differential equations, is considered. The right part of the system involves the phase coordinates as a unknown constant vector-parameter and a small number. The statistical data are taken from practice: the initial and final values of the object coordinates. Using the method of quasilinearization the given equation is reduced to the system of linear differential equations, where the coefficients of the coordinate and unknown parameter, also of the perturbations depend on a small parameter linearly. Then, by using the least-squares method the unknown constant vector-parameter is searched in the form of power series on a small parameter and for the coefficients of zero and the first orders the analytical formulas are given. The fundamental matrices both in a zero and in the first approach are constructed approximately, by means of the ordinary Euler method. On an example the determination of the coefficient of hydraulic resistance (CHR) in the lift in the oil extraction by gas lift method is illustrated, as the obtained results in the first approaching coincides with well-known results on order of 10-2.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1336
Author(s):  
Constantin Bota ◽  
Bogdan Căruntu ◽  
Dumitru Ţucu ◽  
Marioara Lăpădat ◽  
Mădălina Sofia Paşca

In this paper a new method called the least squares differential quadrature method (LSDQM) is introduced as a straightforward and efficient method to compute analytical approximate polynomial solutions for nonlinear partial differential equations with fractional time derivatives. LSDQM is a combination of the differential quadrature method and the least squares method and in this paper it is employed to find approximate solutions for a very general class of nonlinear partial differential equations, wherein the fractional derivatives are described in the Caputo sense. The paper contains a clear, step-by-step presentation of the method and a convergence theorem. In order to emphasize the accuracy of LSDQM we included two test problems previously solved by means of other, well-known methods, and observed that our solutions present not only a smaller error but also a much simpler expression. We also included a problem with no known exact solution and the solutions computed by LSDQM are in good agreement with previous ones.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Liang Shen ◽  
Qingsong Xu

This paper proposes the least squares method to estimate the drift parameter for the stochastic differential equations driven by small noises, which is more general than pure jumpα-stable noises. The asymptotic property of this least squares estimator is studied under some regularity conditions. The asymptotic distribution of the estimator is shown to be the convolution of a stable distribution and a normal distribution, which is completely different from the classical cases.


Sign in / Sign up

Export Citation Format

Share Document