scholarly journals On the Moving Trajectory of a Ball in a Viscous Liquid between Two Concentric Rigid Spheres

2018 ◽  
Vol 23 (4) ◽  
pp. 77
Author(s):  
Sergey Gladkov ◽  
Sophie Bogdanova

In the paper, the dynamic motion of a point ball with a mass of m , sliding in a viscous liquid between two concentric spheres under the influence of gravity and viscous and dry resistance, is investigated. In addition, it is considered that the ball starts its motion from some arbitrary point M 0 = M ( θ 0 , φ 0 ) . A system of nonlinear differential equations in a spheroidal coordinate system is obtained for the angular variables θ and φ to account for all the forces acting on the ball. The dependence of the reaction force on the angular variables is found, and the solution of the resulting system of equations is numerically analyzed. The projections of the trajectories on the plane x − y ,   y − z ,   x − z are found.

Author(s):  
A. Yu. Pavlov

In the article necessary conditions for a controllability of systems of nonlinear differential equations in an infinite time are obtained without assuming the existence of an asymptotic equilibrium for the system of linear approximation. Thus, a new class of controlled systems of differential equations is presented. The problem of controllability for an infinite time (i.e. the transfer of an arbitrary point into an arbitrary small domain of another point) comes down to choosing an operator depending on the selected control, which in turn depends on the point being transferred. Then one is to prove the existence of a fixed point for this operator. It is known that the theorems on controllability require existence of an asymptotic equilibrium for system of the first approximation. It is shown in the paper that in general case the condition of asymptotic equilibrium’s existence is not necessary for controllability of systems in an infinite time. An example on the theorem on controllability for an infinite time is given. The theorem generalizing Vazhevsky inequality is proved by implementation of Cauchy-Bunyakovsky inequality. A remark is made about the theorem’s validity for the case when the matrix and vector from the right-hand side of nonlinear differential equation are complex and x is vector with complex components. Basing on the left-hand side of the inequality in the theorem generalizing Vazhevsky inequality, the necessary conditions for controllability in an infinite time are obtained. These conditions are verified on the same example of a scalar equation that was mentioned before.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Oleksandr Kyriienko ◽  
Annie E. Paine ◽  
Vincent E. Elfving

2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 446
Author(s):  
Alanoud Almutairi ◽  
Omar Bazighifan ◽  
Youssef N. Raffoul

The aim of this work is to investigate the oscillation of solutions of higher-order nonlinear differential equations with a middle term. By using the integral averaging technique, Riccati transformation technique and comparison technique, several oscillatory properties are presented that unify the results obtained in the literature. Some examples are presented to demonstrate the main results.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1335
Author(s):  
Vasile Marinca ◽  
Nicolae Herisanu

Based on a new kind of analytical approach, namely the Optimal Auxiliary Functions Method (OAFM), a new analytical procedure is proposed to solve the problem of the annular axisymmetric stagnation flow and heat transfer on a moving cylinder with finite radius. As a novelty, explicit analytical solutions were obtained for the considered complex problem. First, the Navier–Stokes equations were simplified by means of similarity transformations that depended on different parameters and some combinations of these parameters, and the problem under study was reduced to six nonlinear ordinary differential equations with six unknowns. The OAFM proves to be a powerful tool for finding an accurate analytical solution for nonlinear problems, ensuring a fast convergence after the first iteration, even if the small or large parameters are absent, since the determination of the convergence-control parameters is independent of the magnitude of the coefficients that appear in the nonlinear differential equations. Concerning the main novelties of the proposed approach, it is worth mentioning the presence of some auxiliary functions, the involvement of the convergence-control parameters, the construction of the first iteration and much freedom to select the procedure for determining the optimal values of the convergence-control parameters.


Sign in / Sign up

Export Citation Format

Share Document