scholarly journals New Cembranoids and a Biscembranoid Peroxide from the Soft Coral Sarcophyton cherbonnieri

Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 276 ◽  
Author(s):  
Chia-Chi Peng ◽  
Chiung-Yao Huang ◽  
Atallah Ahmed ◽  
Tsong-Long Hwang ◽  
Chang-Feng Dai ◽  
...  

Six new cembranoids, cherbonolides A−E (1–5) and bischerbolide peroxide (6), along with one known cembranoid, isosarcophine (7), were isolated from the Formosan soft coral Sarcophyton cherbonnieri. The structures of these compounds were elucidated by detailed spectroscopic analysis and chemical methods. Compound 6 was discovered to be the first example of a molecular skeleton formed from two cembranoids connected by a peroxide group. Compounds 1–7 were shown to have the ability of inhibiting the production of superoxide anions and elastase release in N-formyl-methionyl-leucyl-phenyl-alanine/cytochalasin B (fMLF/CB)-induced human neutrophils.

Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 120 ◽  
Author(s):  
Yang Cheng ◽  
Atallah Ahmed ◽  
Raha Orfali ◽  
Chang-Feng Dai ◽  
Jyh-Horng Sheu

Three new eunicellin-derived diterpenoids of briarellin type, briarenones A‒C (1‒3), were isolated from a Formosan gorgonian Briareum violaceum. The chemical structures of the compounds were elucidated on the basis of extensive spectroscopic analyses, including two-dimensional (2D) NMR. The absolute configuration of 1 was further confirmed by a single crystal X-ray diffraction analysis. The in vitro cytotoxic and anti-inflammatory potentialities of the isolated metabolites were tested against the growth of a limited panel of cancer cell lines and against the production of superoxide anions and elastase release in N-formyl-methionyl-leucyl-phenyl-alanine and cytochalasin B (fMLF/CB)-stimulated human neutrophils, respectively.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 461
Author(s):  
Tseng ◽  
Ahmed ◽  
Huang ◽  
Tsai ◽  
Tai ◽  
...  

Two new capnosane-based diterpenoids, flaccidenol A (1) and 7-epi-pavidolide D (2), two new cembranoids, flaccidodioxide (3) and flaccidodiol (4), and three known compounds 5 to 7 were characterized from the marine soft coral Klyxum flaccidum, collected off the coast of the island of Pratas. The structures of the new compounds were determined by extensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and spectroscopic data comparison with related structures. The rare capnosane diterpenoids were isolated herein from the genus Klyxum for the first time. The cytotoxicity of compounds 1 to 7 against the proliferation of a limited panel of cancer cell lines was assayed. The isolated diterpenoids also exhibited anti-inflammatory activity through suppression of superoxide anion generation and elastase release in the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-stimulated human neutrophils. Furthermore, 1 and 7 also exhibited cytotoxicity toward the tested cancer cells, and 7 could effectively inhibit elastase release. It is worth noting that the biological activities of 7 are reported for the first time in this paper.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 260
Author(s):  
Chia-Chi Peng ◽  
Tzu-Yin Huang ◽  
Chiung-Yao Huang ◽  
Tsong-Long Hwang ◽  
Jyh-Horng Sheu

Two new isosarcophine derivatives, cherbonolides M (1) and N (2), were further isolated from a Formosan soft coral Sarcophyton cherbonnieri. The planar structure and relative configuration of both compounds were established by the detailed analysis of the IR, MS, and 1D and 2D NMR data. Further, the absolute configuration of both compounds was determined by the comparison of CD spectra with that of isosarcophine (3). Notably, cherbonolide N (2) possesses the unique cembranoidal scaffold of tetrahydrooxepane with the 12,17-ether linkage fusing with a γ-lactone. In addition, the assay for cytotoxicity of both new compounds revealed that they showed to be noncytotoxic toward the proliferation of A549, DLD-1, and HuCCT-1 cell lines. Moreover, the anti-inflammatory activities of both metabolites were carried out by measuring the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced generation of superoxide anion and elastase release in the primary human neutrophils. Cherbonolide N (2) was found to reduce the generation of superoxide anion (20.6 ± 6.8%) and the elastase release (30.1 ± 3.3%) in the fMLF/CB-induced human neutrophils at a concentration of 30 μM.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 278 ◽  
Author(s):  
Chia-Hua Wu ◽  
Chih-Hua Chao ◽  
Tzu-Zin Huang ◽  
Chiung-Yao Huang ◽  
Tsong-Long Hwang ◽  
...  

Five new cembranoid-related diterpenoids, namely, flexibilisins D and E (1 and 2), secoflexibilisolides A and B (3 and 4), and flexibilisolide H (5), along with nine known compounds (6–14), were isolated from the soft coral Sinularia flexibilis. Their structures were established by extensive spectral analysis. Compound 3 possesses an unusual skeleton that could be biogenetically derived from cembranoids. The cytotoxicity and anti-inflammatory activities of the isolates were investigated, and the results showed that dehydrosinulariolide (7) and 11-epi-sinulariolide acetate (8) exhibited cytotoxicity toward a limited panel of cancer cell lines and 14-deoxycrassin (9) displayed anti-inflammatory activity by inhibition of superoxide anion generation and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophils.


2017 ◽  
Vol 19 (34) ◽  
pp. 23176-23186 ◽  
Author(s):  
Mauritz Johan Ryding ◽  
Israel Fernández ◽  
Einar Uggerud

Reactions between water clusters containing the superoxide anion, O2˙−(H2O)n (n = 0–4), and formic acid, HCO2H, were studied experimentally in vacuo and modelled using quantum chemical methods.


1992 ◽  
Vol 282 (2) ◽  
pp. 393-397 ◽  
Author(s):  
J Norgauer ◽  
M Eberle ◽  
H D Lemke ◽  
K Aktories

In human neutrophils, mastoparan induced rapid F-actin polymerization which was followed by a slow and sustained depolymerization to below the initial F-actin content. Incubation of neutrophils with pertussis toxin inhibited mastoparan-stimulated actin polymerization; however it did not prevent sustained depolymerization of F-actin. Analyses of phospholipids performed in parallel revealed that mastoparan stimulated rapid formation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and consumption of phosphatidylinositol 4,5-bisphosphate (PIP2). Pertussis toxin treatment blocked mastoparan-induced formation of PIP3. Furthermore, mastoparan stimulated the release of N-acetylglucosaminidase from primary granules. Cytochalasin B enhanced mastoparan-stimulated secretion. Mastoparan triggered superoxide radical production in a cytochalasin B-sensitive manner and induced complement type 3 receptor (CR3) up-regulation.


1992 ◽  
Vol 284 (2) ◽  
pp. 513-520 ◽  
Author(s):  
S J Suchard ◽  
M J Burton ◽  
S J Stoehr

The extracellular matrix (ECM) protein thrombospondin (TSP) binds specifically to polymorphonuclear leucocyte (PMN) surface receptors and promotes cell adhesion and motility. TSP receptor expression increases 30-fold after activation with the synthetic chemotactic peptide, N-formylmethionyl-leucylphenylalanine (FMLP) or the Ca2+ ionophore A23187, in combination with cytochalasin B. The expression of TSP receptors was correlated with the exocytosis of both specific and azurophil granules. Newly expressed TSP receptors are not derived from easily mobilized specific granules since agents that trigger some specific granule release [phorbol myristate acetate (PMA), FMLP or ionophore A23187 alone] do not increase TSP receptor expression. In this study we used the anion-channel blocker, 4,4′-di-isothiocyanatostilbene-2,2′-disulphonic acid (DIDS) to investigate the source of these newly expressed receptors. When PMNs were exposed to cytochalasin B and FMLP or to cytochalasin B and ionophore A23187 in the presence of 30-100 microM-DIDS, TSP receptor expression increased coincidently with vitamin B12-binding protein release from specific granules. Under these same conditions, the release of the azurophil granule component, myeloperoxidase, was significantly inhibited. Using agonists that cause release of specific granules, or both specific granules and azurophil granules, we determined that DIDS blocked the release of PMA-mobilized specific granules and cytochalasin B plus FMLP- or cytochalasin B plus ionophore A23187-mobilized myeloperoxidase-containing azurophil granules but not specific granules mobilized by cytochalasin B plus FMLP or cytochalasin B plus ionophore A23187. These results suggested that PMNs contain at least two subpopulations of specific granules: one that is easily mobilized, lacks TSP receptors and is inhibitable by DIDS, and one that is difficult to mobilize, contains a large pool of TSP receptors and the release of which is enhanced in the presence of DIDS.


2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Hsu-Ming Chung ◽  
Wei-Hsien Wang ◽  
Tsong-Long Hwang ◽  
Yang-Chang Wu ◽  
Ping-Jyun Sung

Three natural clovane-related sesquiterpenoids, 2β-acetoxyclovan-9α-ol (1), 9α-acetoxyclovan-2β-ol (2) and clovan-2β,9β-diol (3), were isolated from the gorgonian coral Rumphella antipathies. The structures of clovanes 1–3 were elucidated by spectroscopic methods and by comparison of the spectral data with those of known clovane analogues. This is the first time that clovanes 1–3 have been isolated from a natural source. Clovanes 1 and 2 displayed inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Hsin-Huan Chang ◽  
Yu-Chia Chang ◽  
Wu-Fu Chen ◽  
Tsong-Long Hwang ◽  
Lee-Shing Fang ◽  
...  

The structures of pubinernoid A (1) and apo-9′-fucoxanthinone (2), isolated from a gorgonian coral Pinnigorgia sp., were elucidated on the basis of spectroscopic analysis and by comparison of their spectroscopic data with those of known compounds. This is the first report of 1 and 2 from an animal source. Apo-9′-fucoxanthinone (2) displayed a significant inhibitory effect on the release of elastase by human neutrophils, with an IC50 value of 5.75 μM.


1977 ◽  
Vol 75 (3) ◽  
pp. 666-693 ◽  
Author(s):  
HL Malech ◽  
RK Root ◽  
JI Gallin

Orientation of nucleus, centriole, microtubules, and microfilaments within human neutrophils in a gradient of chemoattractant (5 percent Escherichia coli endotoxin-activated serum) was evaluated by electron microscopy. Purified neutropils (hypaque-Ficoll) were placed in the upper compartment of chemotactic chambers. Use of small pore (0.45 μm) micropore filters permitted pseudopod penetration, but impeded migration. Under conditions of chemotaxis with activated serum beneath the filter, the neutrophil population oriented at the filter surface with nuclei located away from the stimulus, centrioles and associated radial array of microtubules beneath the nuclei, and microfilament-rich pseudopods penetrating the filter pores. Reversal of the direction of the gradient of the stimulus (activated serum above cells) resulted in a reorientation of internal structure which preceded pseudopod formation toward the activated serum and migration off the filter. Coordinated orientation of the entire neutrophil population did not occur in buffer (random migration) or in a uniform concentration of activated serum (activated random migration). Conditions of activated random migration resulted in increased numbers of cells with locomotory morphology, i.e. cellular asymmetry with linear alignment of nucleus, centriole, microtubule array, and pseudopods. Thus, activated serum increased the number of neutrophils exhibiting locomotory morphology, and a gradient of activated serum induced the alignment of neutrophils such that this locomotory morphology was uniform in the observed neutrophil populayion. In related studies, cytochalasin B and colchicines were used to explore the role of microfilaments and microtubules in the neutrophil orientation and migration response to activated serum. Cytochalasin B (3.0 μg/ml) prevented migration and decreased the microfilaments seen, but allowed normal orientation of neutrophil structures. In an activated serum gradient, colchicines, but not lumicolchicine, decreased the orientation of nuclei and centrioles, and caused a decrease in centriole-associated microtubules in concentrations as low as 10(-8) to 10(-7) M. These colchicines effects were associated with the rounding of cells and impairment of pseudopod formation. The impaired pseudopod formation was characterized by an inability to form pseudopods in the absence of a solid substrate, a formation of narrow pseudopods within a substrate, and a defect in pseudopod orientation in an activated serum gradient. Functional studies of migration showed that colchicines, but not lumicolchicine, minimally decreased activated random migration and markedly inhibited directed migration, but had not effect on random migration. These studies show that, although functioning microfilaments are probably necessary for neutrophil migration, intact microtubules are essential for normal pseudopod formation and orientation, and maximal unidirectional migration during chemotaxis.


Sign in / Sign up

Export Citation Format

Share Document