scholarly journals Characterization and Application of an Alginate Lyase, Aly1281 from Marine Bacterium Pseudoalteromonas carrageenovora ASY5

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 95 ◽  
Author(s):  
Yong-Hui Zhang ◽  
Yuan Shao ◽  
Chao Jiao ◽  
Qiu-Ming Yang ◽  
Hui-Fen Weng ◽  
...  

Alginate extracted from widely cultured brown seaweed can be hydrolyzed by alginate lyase to produce alginate oligosaccharides (AOS) with intriguing biological activities. Herein, a novel alginate lyase Aly1281 was cloned from marine bacterium Pseudoalteromonas carrageenovora ASY5 isolated from mangrove soil and found to belong to polysaccharide lyase family 7. Aly1281 exhibited maximum activity at pH 8.0 and 50 °C and have broad substrate specificity for polyguluronate and polymannuronate. Compared with other alginate lyases, Aly1281 exhibited high degradation specificity and mainly produced di-alginate oligosaccharides which displayed good antioxidant function to reduce ferric and scavenge radicals such as hydroxyl, ABTS+ and DPPH. Moreover, the catalytic activity and kinetic performance of Aly1281 were highly improved with the addition of salt, demonstrating a salt-activation property. A putative conformational structural feature of Aly1281 was found by MD simulation analysis for understanding the salt-activation effect.

Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 155
Author(s):  
Huiqin Huang ◽  
Shuang Li ◽  
Shixiang Bao ◽  
Kunlian Mo ◽  
Dongmei Sun ◽  
...  

The alginate lyases have unique advantages in the preparation of alginate oligosaccharides and processing of brown algae. Herein, a gene alg2951 encoding a PL7 family alginate lyase with exo/endo-type activity was cloned from a novel marine bacterium Alteromonas portus HB161718T and then expressed in Escherichia coli. The recombinant Alg2951 in the culture supernatant reached the activity of 63.6 U/mL, with a molecular weight of approximate 60 kDa. Alg2951 exhibited the maximum activity at 25 °C and pH 8.0, was relatively stable at temperatures lower than 30 °C, and showed a special preference to poly-guluronic acid (polyG) as well. Both NaCl and KCl had the most promotion effect on the enzyme activity of Alg2951 at 0.2 M, increasing by 21.6 and 19.1 times, respectively. The TCL (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) analyses suggested that Alg2951 could catalyze the hydrolysis of sodium alginate to produce monosaccharides and trisaccharides. Furthermore, the enzymatic hydrolysates displayed good antioxidant activity by assays of the scavenging abilities towards radicals (hydroxyl and ABTS+) and the reducing power. Due to its cold-adapted and dual exo/endo-type properties, Alg2951 can be a potential enzymatic tool for industrial production.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 416
Author(s):  
Yan Ma ◽  
Jie Li ◽  
Xin-Yue Zhang ◽  
Hao-Dong Ni ◽  
Feng-Biao Wang ◽  
...  

Alginate lyases play an important role in alginate oligosaccharides (AOS) preparation and brown seaweed processing. Many extracellular alginate lyases have been characterized to develop efficient degradation tools needed for industrial applications. However, few studies focusing on intracellular alginate lyases have been conducted. In this work, a novel intracellular alkaline alginate lyase Alyw202 from Vibrio sp. W2 was cloned, expressed and characterized. Secretory expression was performed in a food-grade host, Yarrowia lipolytica. Recombinant Alyw202 with a molecular weight of approximately 38.3 kDa exhibited the highest activity at 45 °C and more than 60% of the activity in a broad pH range of 3.0 to 10.0. Furthermore, Alyw202 showed remarkable metal ion-tolerance, NaCl independence and the capacity of degrading alginate into oligosaccharides of DP2-DP4. Due to the unique pH-stable and high salt-tolerant properties, Alyw202 has potential applications in the food and pharmaceutical industries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Liu ◽  
Zhipeng Wang ◽  
Zhihong Zheng ◽  
Ze Li ◽  
Xiaofeng Ji ◽  
...  

Alginate lyase possesses wide application prospects for the degradation of brown algae and preparation of alginate oligosaccharides, and its degradation products display a variety of biological activities. Although many enzymes of this type have been reported, alginate lyases with unique properties are still relatively rare. In the present work, an alginate lyase abbreviated as Alyw203 has been cloned from Vibrio sp. W2 and expressed in food-grade Yarrowia lipolytica. The Alyw203 gene consists of an open reading frame (ORF) of 1,566 bp containing 521 amino acids, of which the first 17 amino acids are considered signal peptides, corresponding to secretory features. The peak activity of the current enzyme appears at 45°C with a molecular weight of approximately 57.0 kDa. Interestingly, Alyw203 exhibits unique heat recovery performance, returning above 90% of its initial activity in the subsequent incubation for 20 min at 10°C, which is conducive to the recovery of current enzymes at low-temperature conditions. Meanwhile, the highest activity is obtained under alkaline conditions of pH 10.0, showing outstanding pH stability. Additionally, as an alginate lyase independent of NaCl and resistant to metal ions, Alyw203 is highly active in various ionic environments. Moreover, the hydrolyzates of present enzymes are mainly concentrated in the oligosaccharides of DP1–DP2, displaying perfect product specificity. The alkali suitability, heat recovery performance, and high oligosaccharide yield of Alyw203 make it a potential candidate for industrial production of the monosaccharide and disaccharide.


Author(s):  
Subaryono Subaryono ◽  
Rosmawaty Peranginangin ◽  
Maggy Thenawidjaja Suhartono ◽  
Fransiska Rungkat Zakaria

Alginate lyases are group of enzymes which catalyze depolymerization of alginate into oligosaccharides. Alginate lyase have been widely used in many applications such as in production of bioactive oligosaccharides, control of polysaccharide rheological properties, and polysaccharide structure analysis. The products of alginate lyase, polysaccharide structure analysis, alginate oligosaccharides (AOS) have many biological activities including act as prebiotics, immune modulator, anticoagulation, antioxidant, anticancer, growth promoting activities, promote production of antibiotics and ethanol. In relation to the importance of alginate lyases, their potential aplications and prospect in development of new bioactive products, we present review of the enzymes, sources, mechanism of activity and potential applications. This paper also discussed some new biological engineering in alginate lyase production.


2017 ◽  
Vol 20 (1) ◽  
pp. 63
Author(s):  
Subaryono Subaryono ◽  
Rosmawati Perangiangin ◽  
Maggy Thenawidjaja Suhartono ◽  
Fransiska Rungkat Zakaria

Alginate oligosaccharides (AOS) are oligosaccharides produced from depolimerization of the alginate polymer, and is reported to have various biological activities. The study aims is to determine the effect of AOS<br />production conditions and their effects on products and its activities as an immunomodulatory compound. Production of alginate oligosaccharides (AOS) enzymatically carried out with the help of alginate lyase enzyme produced from the bacterium Bacillus megaterium S245. Variation of incubation time is 2, 4, 6 and 8 hours at concentrations of alginate lyase enzyme addition of 25, 50, 75 and 100U. Treatment of enzyme concentration and the duration of incubation in the production of AOS produces a degree of polymerization (DP) 2-7. In vitro activity test showed AOS is have ability to induce cell proliferation of human lymphocytes.<br />This type of cell lymphocytes proliferation induced by AOS is a CD 8 cells or cytotoxic T cell and non cell CD4 / CD8. AOS production conditions with the addition of alginate lyase enzyme 50 U and incubation period 2 hours has produce AOS with the highest index of lymphocyte proliferation  117.6+3.6% or an increase of 43.24% compared to the native alginat polymer.<br /><br /><br />


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 308 ◽  
Author(s):  
Yanan Wang ◽  
Xuehong Chen ◽  
Xiaolin Bi ◽  
Yining Ren ◽  
Qi Han ◽  
...  

Alginate oligosaccharides (AOS) show versatile bioactivities. Although various alginate lyases have been characterized, enzymes with special characteristics are still rare. In this study, a polysaccharide lyase family 7 (PL7) alginate lyase-encoding gene, aly08, was cloned from the marine bacterium Vibrio sp. SY01 and expressed in Escherichia coli. The purified alginate lyase Aly08, with a molecular weight of 35 kDa, showed a specific activity of 841 U/mg at its optimal pH (pH 8.35) and temperature (45 °C). Aly08 showed good pH-stability, as it remained more than 80% of its initial activity in a wide pH range (4.0–10.0). Aly08 was also a thermo-tolerant enzyme that recovered 70.8% of its initial activity following heat shock treatment for 5 min. This study also demonstrated that Aly08 is a polyG-preferred enzyme. Furthermore, Aly08 degraded alginates into disaccharides and trisaccharides in an endo-manner. Its thermo-tolerance and pH-stable properties make Aly08 a good candidate for further applications.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 388
Author(s):  
Hai-Xiang Zhou ◽  
Shan-Shan Xu ◽  
Xue-Jing Yin ◽  
Feng-Long Wang ◽  
Yang Li

Alginate oligosaccharides produced by enzymatic degradation show versatile physiological functions and biological activities. In this study, a new alginate lyase encoding gene alyS02 from Flavobacterium sp. S02 was recombinantly expressed at a high level in Yarrowia lipolytica, with the highest extracellular activity in the supernatant reaching 36.8 ± 2.1 U/mL. AlyS02 was classified in the polysaccharide lyase (PL) family 7. The optimal reaction temperature and pH of this enzyme were 30 °C and 7.6, respectively, indicating that AlyS02 is a cold-adapted enzyme. Interestingly, AlyS02 contained more than 90% enzyme activity at 25 °C, higher than other cold-adapted enzymes. Moreover, AlyS02 is a bifunctional alginate lyase that degrades both polyG and polyM, producing di- and trisaccharides from alginate. These findings suggest that AlyS02 would be a potent tool for the industrial applications.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3915 ◽  
Author(s):  
Yue Yang ◽  
Zhou Zheng ◽  
Yifei Xiao ◽  
Jiaojiao Zhang ◽  
Yu Zhou ◽  
...  

Chitosanase plays an important role in the production of chitooligosaccharides (CHOS), which possess various biological activities. Herein, a glycoside hydrolase (GH) family 46 chitosanase-encoding gene, csnB, was cloned from marine bacterium Bacillus sp. BY01 and heterologously expressed in Escherichia coli. The recombinant chitosanase, CsnB, was optimally active at 35 °C and pH 5.0. It was also revealed to be a cold-adapted enzyme, maintaining 39.5% and 40.4% of its maximum activity at 0 and 10 °C, respectively. Meanwhile, CsnB showed wide pH-stability within the range of pH 3.0 to 7.0. Then, an improved reaction condition was built to enhance its thermostability with a final glycerol volume concentration of 20%. Moreover, CsnB was determined to be an endo-type chitosanase, yielding chitosan disaccharides and trisaccharides as the main products. Overall, CsnB provides a new choice for enzymatic CHOS production.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 295 ◽  
Author(s):  
Jingjing Zhuang ◽  
Keke Zhang ◽  
Xiaohua Liu ◽  
Weizhi Liu ◽  
Qianqian Lyu ◽  
...  

Alginate lyases are enzymes that degrade alginate into oligosaccharides which possess a variety of biological activities. Discovering and characterizing novel alginate lyases has great significance for industrial and medical applications. In this study, we reported a novel alginate lyase, AlyA-OU02, derived from the marine Vibrio splendidus OU02. The BLASTP searches showed that AlyA-OU02 belonged to polysaccharide lyase family 7 (PL7) and contained two consecutive PL7 domains, which was rare among the alginate lyases in PL7 family. Both the two domains, AlyAa and AlyAb, had lyase activities, while AlyAa exhibited polyM preference, and AlyAb was polyG-preferred. In addition, the enzyme activity of AlyAa was much higher than AlyAb at 25 °C. The full-length enzyme of AlyA-OU02 showed polyM preference, which was the same as AlyAa. AlyAa degraded alginate into di-, tri-, and tetra-alginate oligosaccharides, while AlyAb degraded alginate into tri-, tetra-, and penta-alginate oligosaccharides. The degraded products of AlyA-OU02 were similar to AlyAa. Our work provided a potential candidate in the application of alginate oligosaccharide production and the characterization of the two domains might provide insights into the use of alginate of this organism.


Marine Drugs ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. 545 ◽  
Author(s):  
Junjun Yan ◽  
Peng Chen ◽  
Yan Zeng ◽  
Yan Men ◽  
Shicheng Mu ◽  
...  

Alginase lyase is an important enzyme for the preparation of alginate oligosaccharides (AOS), that possess special biological activities and is widely used in various fields, such as medicine, food, and chemical industry. In this study, a novel bifunctional alginate lyase (AlgH) belonging to the PL7 family was screened and characterized. The AlgH exhibited the highest activity at 45 °C and pH 10.0, and was an alkaline enzyme that was stable at pH 6.0–10.0. The enzyme showed no significant dependence on metal ions, and exhibited unchanged activity at high concentration of NaCl. To determine the function of non-catalytic domains in the multi-domain enzyme, the recombinant AlgH-I containing only the catalysis domain and AlgH-II containing the catalysis domain and the carbohydrate binding module (CBM) domain were constructed and characterized. The results showed that the activity and thermostability of the reconstructed enzymes were significantly improved by deletion of the F5/8 type C domain. On the other hand, the substrate specificity and the mode of action of the reconstructed enzymes showed no change. Alginate could be completely degraded by the full-length and modified enzymes, and the main end-products were alginate disaccharide, trisaccharide, and tetrasaccharide. Due to the thermo and pH-stability, salt-tolerance, and bifunctionality, the modified alginate lyase was a robust enzyme which could be applied in industrial production of AOS.


Sign in / Sign up

Export Citation Format

Share Document