scholarly journals Property Characterization and Mechanism Analysis of Polyoxometalates-Functionalized PVDF Membranes by Electrochemical Impedance Spectroscopy

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 214
Author(s):  
Lei Yao ◽  
Ziyi Long ◽  
Zhe Chen ◽  
Qisong Cheng ◽  
Yuan Liao ◽  
...  

Polyoxometalates (POMs) has proved its advantage in constructing high-performance nanocomposite membranes such as catalytic membranes, adsorptive membranes, and forward osmosis membranes. However, it is challenging or tedious to characterize its distribution and effect on the membrane structures due to the equipment resolution limitation, discrete nano-scaled structures of POMs, and limited doping amount compared to the polymeric membrane matrix. In this paper, POMs-functionalized polyvinylidene fluoride (PVDF) membranes were fabricated by phase inversion combined with the sol-gel method, and electrochemical impedance spectroscopy (EIS) was utilized to analyze the nanocomposite membrane intrinsic properties. Through adjusting the additives in the sol-forming process, a set of membranes with varied intrinsic properties were developed accordingly. The wetting degree of the membranes related to the hydrophilic nature of the membrane surfaces had a crucial influence on the impedance measurements at the early stage. Through EIS analysis, it was demonstrated that the amination of the membrane matrix through (3-aminopropyl)trimethoxysilane (APTMS) treatment and the immobilization of POMs through electrostatic attraction would not generate new pore structures into the membrane and only alter the membrane surface roughness and composition. To my knowledge, it is the first time that EIS was utilized to characterize the hydrophilicity of the membranes and pore structures of the POMs-modified membranes. Our findings indicate that EIS can provide valuable information for probing the structures of other nano-materials-incorporated membranes.

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6443
Author(s):  
Lucian-Gabriel Zamfir ◽  
Mihaela Puiu ◽  
Camelia Bala

Endocrine disruptors (EDs) are contaminants that may mimic or interfere with the body’s hormones, hampering the normal functions of the endocrine system in humans and animals. These substances, either natural or man-made, are involved in development, breeding, and immunity, causing a wide range of diseases and disorders. The traditional detection methods such as enzyme linked immunosorbent assay (ELISA) and chromatography are still the golden techniques for EDs detection due to their high sensitivity, robustness, and accuracy. Nevertheless, they have the disadvantage of being expensive and time-consuming, requiring bulky equipment or skilled personnel. On the other hand, early stage detection of EDs on-the-field requires portable devices fulfilling the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to end users (ASSURED) norms. Electrochemical impedance spectroscopy (EIS)-based sensors can be easily implemented in fully automated, sample-to-answer devices by integrating electrodes in microfluidic chips. The latest achievements on EIS-based sensors are discussed and critically assessed.


2018 ◽  
Vol 5 (6) ◽  
pp. 065507 ◽  
Author(s):  
Qi-Zhao Luo ◽  
Qing Huang ◽  
Zhe Chen ◽  
Lei Yao ◽  
Ping Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document