scholarly journals Prediction of Adsorption and Diffusion Behaviors of CO2 and CH4 in All-Silica Zeolites Using Molecular Simulation

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 392
Author(s):  
Yasuhisa Hasegawa ◽  
Chie Abe

Computational chemistry is a promising technique for the prediction of material properties. Adsorption and diffusion behaviors in zeolite micropores are important for zeolite membranes. In this study, we investigated novel non-bonding interaction parameters of all-silica zeolites for the prediction of the adsorption and diffusion behaviors by focusing on the Si atom of zeolite frameworks. Our parameters (σ = 0.421 nm, ε = 0.954 kJ mol−1, and q = +1.10 e) were close to theoretically derived values, and the adsorption isotherms of CO2 and CH4 on several zeolites could be predicted with high accuracy. Furthermore, the parameters gave the suitable self-diffusivities of CO2 and CH4 within MFI-type zeolite micropores through molecular dynamics simulation. Those suggest that our derived parameters are useful for selecting zeolite structure as the membrane material.

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1905 ◽  
Author(s):  
Chengbin Zhang ◽  
Hanhui Dai ◽  
Pengfei Lu ◽  
Liangyu Wu ◽  
Bo Zhou ◽  
...  

The distribution and diffusion behaviors of microscopic particles at fluorobenzene–water and pentanol–water interfaces are investigated using molecular dynamics simulation. The influences of Na+/Cl− ions and the steric effects of organic molecules are examined. The concentration distributions of different species, the orientations of oil molecules at the interface, and oil–water interface morphology as well as the diffusion behaviors of water molecules are explored and analyzed. The results indicate that a few fluorobenzene molecules move into the water phase influenced by Na+/Cl− ions, while the pentanol molecules at the interface prefer orientating their hydrophilic groups toward the water phase due to their large size. The water molecules more easily burst into the pentanol phase with larger molecular spaces. As the concentration of ions in the water phase increases, more water molecules enter into the pentanol molecules, leading to larger interface roughness and interface thickness. In addition, a lower diffusion coefficient for water molecules at the fluorobenzene–water interface are observed when introducing Na+/Cl− ions in the water phase, while for the pentanol–water system, the mobility of interfacial water molecules are enhanced with less ions and inhibited with more ions.


Author(s):  
Mingrui Yang ◽  
Junyi Xiang ◽  
Chenguang Bai ◽  
Xuangeng Zhou ◽  
Zhongci Liu ◽  
...  

2014 ◽  
Vol 118 (46) ◽  
pp. 26634-26640 ◽  
Author(s):  
Peng Shi ◽  
Yu Yang ◽  
Bingyun Ao ◽  
Ping Zhang ◽  
Xiaolin Wang

2021 ◽  
Vol 66 (1) ◽  
pp. 42-48
Author(s):  
Kien Pham Huu ◽  
Linh Nguyen Hong ◽  
Hien Pham Xuan ◽  
Linh Nguyen Thi Thuy ◽  
Quang Phan Dinh ◽  
...  

In this paper, we perform a simulation about liquid GeO2. The structure and diffusion process are analyzed through the radial distribution function, the distribution of GeOx (x = 4, 5, 6) structural units, length distribution, angle distribution, and data visualization. Simulation results show that the structure of liquid GeO2 composes clusters of GeO4, GeO5, or GeO6. These clusters have sizes depending on pressure and are distributed heterogeneously in space. This result confirms the origin of dynamical heterogeneity in the liquid oxide systems. In addition, the diffusion coefficient of Ge and O decreases upon pressure. We show that the diffusion relates to the breaking bond Ge-O.


Sign in / Sign up

Export Citation Format

Share Document