scholarly journals A Study of the Interaction of a New Benzimidazole Schiff Base with Synthetic and Simulated Membrane Models of Bacterial and Mammalian Membranes

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 449
Author(s):  
Alberto Aragón-Muriel ◽  
Yamil Liscano ◽  
David Morales-Morales ◽  
Dorian Polo-Cerón ◽  
Jose Oñate-Garzón

Biological membranes are complex dynamic systems composed of a great variety of carbohydrates, lipids, and proteins, which together play a pivotal role in the protection of organisms and through which the interchange of different substances is regulated in the cell. Given the complexity of membranes, models mimicking them provide a convenient way to study and better understand their mechanisms of action and their interactions with biologically active compounds. Thus, in the present study, a new Schiff base (Bz-Im) derivative from 2-(m-aminophenyl)benzimidazole and 2,4-dihydroxybenzaldehyde was synthesized and characterized by spectroscopic and spectrometric techniques. Interaction studies of (Bz-Im) with two synthetic membrane models prepared with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC/1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) 3:1 mixture, imitating eukaryotic and prokaryotic membranes, respectively, were performed by applying differential scanning calorimetry (DSC). Molecular dynamics simulations were also developed to better understand their interactions. In vitro and in silico assays provided approaches to understand the effect of Bz-Im on these lipid systems. The DSC results showed that, at low compound concentrations, the effects were similar in both membrane models. By increasing the concentration of Bz-Im, the DMPC/DMPG membrane exhibited greater fluidity as a result of the interaction with Bz-Im. On the other hand, molecular dynamics studies carried out on the erythrocyte membrane model using the phospholipids POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), SM (N-(15Z-tetracosenoyl)-sphing-4-enine-1-phosphocholine), and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) revealed that after 30 ns of interaction, both hydrophobic interactions and hydrogen bonds were responsible for the affinity of Bz-Im for PE and SM. The interactions of the imine with POPG (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoglycerol) in the E. coli membrane model were mainly based on hydrophobic interactions.

2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


2019 ◽  
Vol 16 (3) ◽  
pp. 291-300
Author(s):  
Saumya K. Patel ◽  
Mohd Athar ◽  
Prakash C. Jha ◽  
Vijay M. Khedkar ◽  
Yogesh Jasrai ◽  
...  

Background: Combined in-silico and in-vitro approaches were adopted to investigate the antiplasmodial activity of Catharanthus roseus and Tylophora indica plant extracts as well as their isolated components (vinblastine, vincristine and tylophorine). </P><P> Methods: We employed molecular docking to prioritize phytochemicals from a library of 26 compounds against Plasmodium falciparum multidrug-resistance protein 1 (PfMDR1). Furthermore, Molecular Dynamics (MD) simulations were performed for a duration of 10 ns to estimate the dynamical structural integrity of ligand-receptor complexes. </P><P> Results: The retrieved bioactive compounds viz. tylophorine, vinblastin and vincristine were found to exhibit significant interacting behaviour; as validated by in-vitro studies on chloroquine sensitive (3D7) as well as chloroquine resistant (RKL9) strain. Moreover, they also displayed stable trajectory (RMSD, RMSF) and molecular properties with consistent interaction profile in molecular dynamics simulations. </P><P> Conclusion: We anticipate that the retrieved phytochemicals can serve as the potential hits and presented findings would be helpful for the designing of malarial therapeutics.


2017 ◽  
Author(s):  
Ευτυχία Κρίτση

Στην παρούσα διατριβή πραγματοποιήθηκε εκτενής μελέτη για την αναζήτηση πρόδρομων βιοδραστικών ενώσεων (hits) από χημικές βιβλιοθήκες για τρείς βιολογικούς στόχους, μέσω της εφαρμογής εμπορικά διαθέσιμων in silico τεχνικών και μεθοδολογιών.Οι στόχοι που επιλέχθηκαν ανήκουν σε διαφορετικές κατηγορίες πρωτεϊνών με μεγάλο φαρμακευτικό ενδιαφέρον, που όμως παρουσιάζουν διαφορετικό επίπεδο ωριμότητας όσον αφορά την εφαρμογή υπολογιστικών εργαλείωνγια την ανακάλυψη νέων φαρμακευτικών ενώσεων. Συγκεριμένα, οι στόχοι που μελετήθηκαν είναι οι ακόλουθοι:•το ένζυμο της 14-α διμεθυλάσης της λανοστερόλης (CYP51) για την αναζήτηση νέων πρόδρομων βιοδραστικών ενώσεων με αντιμικροβιακές ιδιότητες,•το ένζυμο της HIV τύπου 1 πρωτεάσης (HIV-1 PR) για την αναζήτηση νέων πρόδρομων βιοδραστικών ενώσεων με αντι-HIV δράση,•ο διαμεμβρανικός υποδοχέας της Αγγειοτασίνης ΙΙ (ΑΤ1) για την αναζήτηση νέων πρόδρομων βιοδραστικών με αντιυπερτασική δράσηΟι κυριότερες τεχνικές που χρησιμοποιήθηκαν για την αναζήτηση πρόδρομων βιοδραστικών ενώσεων περιλαμβάνουν την Εικονική Σάρωση (Virtual Screening) με χρήση Φαρμακοφόρων Μοντέλων (Pharmacophore modeling), τη Μοριακή Πρόσδεση (Molecular Docking), την πρόβλεψη μοριακών ιδιοτήτων καθώς και Προσομοιώσεις Μοριακής Δυναμικής (Molecular Dynamics Simulations). Η στρατηγική που ακολουθήθηκε διαφέρει σημαντικά ανά στόχο όσον αφορά τη μεθοδολογική προσέγγιση και την επιλογή των υπολογιστικών εργαλείων-αλγορίθμων, δίνοντας έμφαση στη συμπληρωματικότητα των αποτελεσμάτων τους. Για την ανάδειξη των πρόδρομων βιοδραστικών ενώσεων, πραγματοποιήθηκαν in vitro βιολογικές δοκιμές των ενώσεων που προτάθηκαν μέσω των υπολογιστικών τεχνικών. Οι ενώσεις που επιλέχθηκαν παρουσίασαν ανασταλτική δράση (ή συγγένεια πρόσδεσης) σε ικανοποιητικό εύρος τιμών 102 nM–μΜ για να χαρακτηριστούν πρόδρομες βιοδραστικές. Μείζονος σημασίας είναι και το γεγονός ότι οι δομικοί σκελετοί των προτεινόμενων ενώσεων για κάθε στόχο, είναι διαφορετικοί τόσο μεταξύ τους όσο και συγκρινόμενοι με τα υφιστάμενα φαρμακευτικά μόρια. Ως εκ τούτου, μπορούν να αποτελέσουν κατάλληλα "υποστρώματα" για το επόμενο στάδιο που αφορά τη βελτιστοποίησή τους προς ενώσεις-οδηγούς (hit to lead optimization) και δυνητικά προς νέα φαρμακευτικά προϊόντα.


Sign in / Sign up

Export Citation Format

Share Document