Enhancing Water Permeability with Super-hydrophilic Metal-Organic Frameworks and Hydrophobic Straight Pores

Author(s):  
Mehdi Habibollahzadeh ◽  
Juran Noh ◽  
Liang Feng ◽  
Hong-Cai Zhou ◽  
Ahmed Abdel-Wahab ◽  
...  

High water flux and salt selectivity have been the most demanding goals for osmosis-based membranes. Osmotic pressure differences across membranes are particularly important in emerging forward osmosis and pressure retarded...

2018 ◽  
Vol 9 (14) ◽  
pp. 3508-3516 ◽  
Author(s):  
Weibin Liang ◽  
Lin Li ◽  
Jingwei Hou ◽  
Nicholas D. Shepherd ◽  
Thomas D. Bennett ◽  
...  

The composite membranes with defective metal–organic frameworks (MOFs) show a significant increase in water flux, without compromising the high salt rejection.


2005 ◽  
Vol 289 (1) ◽  
pp. C33-C41 ◽  
Author(s):  
Warren G. Hill ◽  
Eyad Almasri ◽  
W. Giovanni Ruiz ◽  
Gerard Apodaca ◽  
Mark L. Zeidel

Caveolae are invaginated membrane structures with high levels of cholesterol, sphingomyelin, and caveolin protein that are predicted to exist as liquid-ordered domains with low water permeability. We isolated a caveolae-enriched membrane fraction without detergents from rat lung and characterized its permeability properties to nonelectrolytes and protons. Membrane permeability to water was 2.85 ± 0.41 × 10−3 cm/s, a value 5–10 times higher than expected based on comparisons with other cholesterol and sphingolipid-enriched membranes. Permeabilities to urea, ammonia, and protons were measured and found to be moderately high for urea and ammonia at 8.85 ± 2.40 × 10−7and 6.84 ± 1.03 × 10−2 respectively and high for protons at 8.84 ± 3.06 × 10−2 cm/s. To examine whether caveolin or other integral membrane proteins were responsible for high permeabilities, liposomes designed to mimic the lipids of the inner and outer leaflets of the caveolar membrane were made. Osmotic water permeability to both liposome compositions were determined and a combined inner/outer leaflet water permeability was calculated and found to be close to that of native caveolae at 1.58 ± 1.1 × 10−3 cm/s. In caveolae, activation energy for water flux was high (19.4 kcal/mol) and water permeability was not inhibited by HgCl2; however, aquaporin 1 was detectable by immunoblotting. Immunostaining of rat lung with AQP1 and caveolin antisera revealed very low levels of colocalization. We conclude that aquaporin water channels do not contribute significantly to the observed water flux and that caveolae have relatively high water and solute permeabilities due to the high degree of unsaturation in their fatty acyl chains.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 404 ◽  
Author(s):  
Mehrdad Mohammadifakhr ◽  
Joris de Grooth ◽  
Hendrik D. W. Roesink ◽  
Antoine J. B. Kemperman

The use of forward osmosis (FO) for water purification purposes has gained extensive attention in recent years. In this review, we first discuss the advantages, challenges and various applications of FO, as well as the challenges in selecting the proper draw solution for FO, after which we focus on transport limitations in FO processes. Despite recent advances in membrane development for FO, there is still room for improvement of its selective layer and support. For many applications spiral wound membrane will not suffice. Furthermore, a defect-free selective layer is a prerequisite for FO membranes to ensure low solute passage, while a support with low internal concentration polarization is necessary for a high water flux. Due to challenges affiliated to interfacial polymerization (IP) on non-planar geometries, we discuss alternative approaches to IP to form the selective layer. We also explain that, when provided with a defect-free selective layer with good rejection, the membrane support has a dominant influence on the performance of an FO membrane, which can be estimated by the structural parameter (S). We emphasize the necessity of finding a new method to determine S, but also that predominantly the thickness of the support is the major parameter that needs to be optimized.


2017 ◽  
Vol 19 (45) ◽  
pp. 30551-30561 ◽  
Author(s):  
Madhavi Dahanayaka ◽  
Bo Liu ◽  
Zhongqiao Hu ◽  
Qing-Xiang Pei ◽  
Zhong Chen ◽  
...  

A slit-pore stacked graphene membrane shows promising forward osmosis performance with high water flux and ion rejection.


2016 ◽  
Vol 867 ◽  
pp. 127-131 ◽  
Author(s):  
Xiu Ju Wang ◽  
Xin Lian Shi ◽  
Shu Fang Hou ◽  
Jian Hua Yang ◽  
Kai Li Zhou ◽  
...  

In this paper, a novel nanocomposite forward osmosis membrane (nTiO2-CTA/CA) was fabricated by introducing nanotitaniumdi oxide (nTiO2) into the cellulose triacetate/cellulose acetate (CTA/CA)-based casting solution using phase inversion methods. Casting composite and preparation--nTiO2 content, blend temperature and coagulating bath temperature--were tested for their effects on pure water flux and salt rejection of membranes. Results revealed that the FO membrane prepared under optimized composition showed excellent desalination performance (high water flux = 5.38 L/m2·h and salt rejection > 97 %). Moreover, SEM images showed that addition of nTiO2 resulted in nanocomposite forward osmosis membrane with a smoother surface. The contact angle of the membranes decreased from 76o to 51° with increase nTiO2 concentration from 0% to 0.10%.


Carbon ◽  
2019 ◽  
Vol 148 ◽  
pp. 277-289 ◽  
Author(s):  
Xiao Sui ◽  
Hongru Ding ◽  
Ziwen Yuan ◽  
Chanel F. Leong ◽  
Kunli Goh ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 448
Author(s):  
Jin Fei Sark ◽  
Nora Jullok ◽  
Woei Jye Lau

The structural (S) parameter of a medium is used to represent the mass transport resistance of an asymmetric membrane. In this study, we aimed to fabricate a membrane sublayer using a novel composition to improve the S parameter for enhanced forward osmosis (FO). Thin film composite (TFC) membranes using polyamide (PA) as an active layer and different polysulfone:polyethersulfone (PSf:PES) supports as sublayers were prepared via the phase inversion technique, followed by interfacial polymerization. The membrane made with a PSf:PES ratio of 2:3 was observed to have the lowest contact angle (CA) with the highest overall porosity. It also had the highest water permeability (A; 3.79 ± 1.06 L m−2 h−1 bar−1) and salt permeability (B; 8.42 ± 2.34 g m−2 h−1), as well as a good NaCl rejection rate of 74%. An increase in porosity at elevated temperatures from 30 to 40 °C decreased Sint from 184 ± 4 to 159 ± 2 μm. At elevated temperatures, significant increases in the water flux from 13.81 to 42.86 L m−2 h−1 and reverse salt flux (RSF) from 12.74 to 460 g m−2 h−1 occur, reducing Seff from 152 ± 26 to 120 ± 14 μm. Sint is a temperature-dependent parameter, whereas Seff can only be reduced in a high-water- permeability membrane at elevated temperatures.


Desalination ◽  
2017 ◽  
Vol 402 ◽  
pp. 1-9 ◽  
Author(s):  
Masahiro Yasukawa ◽  
Shoji Mishima ◽  
Yasuhiro Tanaka ◽  
Tomoki Takahashi ◽  
Hideto Matsuyama

Sign in / Sign up

Export Citation Format

Share Document