scholarly journals Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 685
Author(s):  
Saman Majeed ◽  
Akram Bani Ahmad ◽  
Ujala Sehar ◽  
Elka R. Georgieva

Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell–environment, cell–cell and virus–host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors—resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs’ mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs’ structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.

2016 ◽  
Vol 311 (6) ◽  
pp. C866-C873 ◽  
Author(s):  
R. Brent Thomson ◽  
Claire L. Thomson ◽  
Peter S. Aronson

The brush border Cl−-oxalate exchanger SLC26A6 plays an essential role in mediating intestinal secretion of oxalate and is crucial for the maintenance of oxalate homeostasis and the prevention of hyperoxaluria and calcium oxalate nephrolithiasis. Previous in vitro studies have suggested that SLC26A6 is heavily N-glycosylated. N-linked glycosylation is known to critically affect folding, trafficking, and function in a wide variety of integral membrane proteins and could therefore potentially have a critical impact on SLC26A6 function and subsequent oxalate homeostasis. Through a series of enzymatic deglycosylation studies we confirmed that endogenously expressed mouse and human SLC26A6 are indeed glycosylated, that the oligosaccharides are principally attached via N-glycosidic linkage, and that there are tissue-specific differences in glycosylation. In vitro cell culture experiments were then used to elucidate the functional significance of the addition of the carbohydrate moieties. Biotinylation studies of SLC26A6 glycosylation mutants indicated that glycosylation is not essential for cell surface delivery of SLC26A6 but suggested that it may affect the efficacy with which it is trafficked and maintained in the plasma membrane. Functional studies of transfected SLC26A6 demonstrated that glycosylation at two sites in the putative second extracellular loop of SLC26A6 is critically important for chloride-dependent oxalate transport and that enzymatic deglycosylation of SLC26A6 expressed on the plasma membrane of intact cells strongly reduced oxalate transport activity. Taken together, these studies indicated that oxalate transport function of SLC26A6 is critically dependent on glycosylation and that exoglycosidase-mediated deglycosylation of SLC26A6 has the capacity to profoundly modulate SLC26A6 function.


2012 ◽  
Vol 28 (11) ◽  
pp. 866
Author(s):  
Jie HENG ◽  
Yan WU ◽  
Xianping WANG ◽  
Kai ZHANG

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Ekaitz Errasti-Murugarren ◽  
Paola Bartoccioni ◽  
Manuel Palacín

Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.


2001 ◽  
Vol 21 (3) ◽  
pp. 731-742 ◽  
Author(s):  
Josef Kuhn ◽  
Ulrike Tengler ◽  
Stefan Binder

ABSTRACT To determine the influence of posttranscriptional modifications on 3′ end processing and RNA stability in plant mitochondria, peaatp9 and Oenothera atp1 transcripts were investigated for the presence and function of 3′ nonencoded nucleotides. A 3′ rapid amplification of cDNA ends approach initiated at oligo(dT)-adapter primers finds the expected poly(A) tails predominantly attached within the second stem or downstream of the double stem-loop structures at sites of previously mapped 3′ ends. Functional studies in a pea mitochondrial in vitro processing system reveal a rapid removal of the poly(A) tails up to termini at the stem-loop structure but little if any influence on further degradation of the RNA. In contrast 3′ poly(A) tracts at RNAs without such stem-loop structures significantly promote total degradation in vitro. To determine the in vivo identity of 3′ nonencoded nucleotides more accurately, pea atp9 transcripts were analyzed by a direct anchor primer ligation-reverse transcriptase PCR approach. This analysis identified maximally 3-nucleotide-long nonencoded extensions most frequently of adenosines combined with cytidines. Processing assays with substrates containing homopolymer stretches of different lengths showed that 10 or more adenosines accelerate RNA processivity, while 3 adenosines have no impact on RNA life span. Thus polyadenylation can generally stimulate the decay of RNAs, but processivity of degradation is almost annihilated by the stabilizing effect of the stem-loop structures. These antagonistic actions thus result in the efficient formation of 3′ processed and stable transcripts.


2016 ◽  
Vol 113 (35) ◽  
pp. E5108-E5116 ◽  
Author(s):  
Sisi Li ◽  
Linda Yen ◽  
William A. Pastor ◽  
Jonathan B. Johnston ◽  
Jiamu Du ◽  
...  

Microrchidia (MORC) proteins are GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPases that function in gene regulation in multiple organisms. Animal MORCs also contain CW-type zinc finger domains, which are known to bind to modified histones. We solved the crystal structure of the murine MORC3 ATPase-CW domain bound to the nucleotide analog AMPPNP (phosphoaminophosphonic acid-adenylate ester) and in complex with a trimethylated histone H3 lysine 4 (H3K4) peptide (H3K4me3). We observed that the MORC3 N-terminal ATPase domain forms a dimer when bound to AMPPNP. We used native mass spectrometry to show that dimerization is ATP-dependent, and that dimer formation is enhanced in the presence of nonhydrolyzable ATP analogs. The CW domain uses an aromatic cage to bind trimethylated Lys4 and forms extensive hydrogen bonds with the H3 tail. We found that MORC3 localizes to promoters marked by H3K4me3 throughout the genome, consistent with its binding to H3K4me3 in vitro. Our work sheds light on aspects of the molecular dynamics and function of MORC3.


2001 ◽  
Vol 69 (5) ◽  
pp. 2935-2942 ◽  
Author(s):  
Tetsuo Kobayashi ◽  
Kouji Yamamoto ◽  
Noriko Sugita ◽  
Annemiek B. van Spriel ◽  
Susumu Kaneko ◽  
...  

ABSTRACT Porphyromonas gingivalis has been implicated as a causative pathogen in periodontitis. Immunotherapeutic approaches have recently been suggested to aid in the clearance of P. gingivalis from disease sites. Because antibody-Fc receptor (FcR) interactions play a role in the effector functions of polymorphonuclear neutrophils (PMN), we evaluated which FcR on PMN from gingival crevicular fluid (GCF) serves as an optimal target molecule for FcR-directed immunotherapy. GCF PMN and peripheral blood (PB) PMN from adult periodontitis patients were analyzed for their immunoglobulin G (IgG) and IgA FcR (FcγR and FcαR, respectively) expression and function by studying IgG- and IgA-mediated elimination of P. gingivalis. GCF PMN exhibited higher FcαRI and FcγRI levels and lower FcγRIIa and FcγRIIIb levels than PB PMN. Functional studies revealed that GCF PMN exhibited less of a capacity to phagocytose and kill IgG1-opsonized P. gingivalisthan PB PMN. IgA1-mediated phagocytosis and killing capacity was, however, comparable between GCF PMN and PB PMN. In summary, these in vitro results document that FcαRI represents a candidate target for FcR-directed immunotherapy for the clearance of P. gingivalis.


1999 ◽  
Vol 58 (3) ◽  
pp. 565-571 ◽  
Author(s):  
Catherine Méplan ◽  
Gerald Verhaegh ◽  
Marie-Jeanne Richard ◽  
Pierre Hainaut

The p53 protein is a multi-function nuclear factor that is activated in response to multiple forms of stress and controls the proliferation, survival, DNA repair and differentiation of cells exposed to potentially genotoxic DNA damage. Loss of p53 function by mutation is a frequent event in human cancer, and is thought to result in the capacity of cells to acquire and accumulate oncogenic mutations during the progression of neoplasia. The p53 protein is a metal-binding transcription factor that is inactivated by metal chelation and by oxidation in vitro. In intact cells, p53 protein activity is crucially dependent on the availability of Zn ions and is impaired by exposure to Cd, a metal which readily substitutes for Zn in a number of transcription factors. Inactivation by Cd suppresses the p53-dependent responses to DNA damage. Overall, these findings indicate that regulation by metals plays an important role in the control of p53, and that perturbation of this control may explain the carcinogenic potential of several metal compounds. Résumé La protéine p53 est un facteur nucléaire multi-fonctionnel qui est activé en réponse à de multiples formes de stress et qui contrôle la prolifération, la survie, la réparation de l’ADN et la différenciation de cellules exposées à des agents génotoxiques. La perte de la fonction de p53 par mutation est un évènement fréquent dans les cancers chez l’homme, et l’on considère que cette inactivation a pour conséquence de rendre la cellule susceptible d’accumuler rapidement des mutations oncogéniques au cours de la progression du cancer. La protéine p53 est un facteur de transcription qui lie les métaux et qui peut être inactivée in vitro par chélation des métaux ainsi que par oxydation. Dans des cellules en culture, l’activité biologique de la p53 dépend de la bio-disponibilité en Zn, et est altérée par l’exposition des cellules au Cd, un métal qui se substitue facilement au Zn dans nombre de facteurs de transcription Zn-dépendants. L’inactivation de p53 par le Cd inhibe les réponses p53-dépendantes suite à la formation de lésions de l’ADN. Globalement, ces données suggèrent que la régulation par les métaux joue un rôle important dans le contrôle de la p53, et que des perturbations de ce contrôle pourraient contribuer à expliquer le potentiel carcinogénique de certains composés métalliques.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101162
Author(s):  
Yuta Endo ◽  
Yuko Shimizu ◽  
Hanako Nishikawa ◽  
Katsuhiro Sawasato ◽  
Ken-ichi Nishiyama

Integral membrane proteins with the N-out topology are inserted into membranes usually in YidC- and PMF-dependent manners. The molecular basis of the various dependencies on insertion factors is not fully understood. A model protein, Pf3-Lep, is inserted independently of both YidC and PMF, whereas the V15D mutant requires both YidC and PMF in vivo. We analyzed the mechanisms that determine the insertion factor dependency in vitro. Glycolipid MPIase was required for insertion of both proteins because MPIase depletion caused a significant defect in insertion. On the other hand, YidC depletion and PMF dissipation had no effects on Pf3-Lep insertion, whereas V15D insertion was reduced. We reconstituted (proteo)liposomes containing MPIase, YidC, and/or F0F1-ATPase. MPIase was essential for insertion of both proteins. YidC and PMF stimulated Pf3-Lep insertion as the synthesis level increased. V15D insertion was stimulated by both YidC and PMF irrespective of the synthesis level. These results indicate that charges in the N-terminal region and the synthesis level are the determinants of YidC and PMF dependencies with the interplay between MPIase, YidC, and PMF.


2020 ◽  
Author(s):  
Reem Mousa ◽  
Taghreed Hidmi ◽  
Sergei Pomyalov ◽  
Shifra Lansky ◽  
Lareen Khouri ◽  
...  

<p>The oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. A well-known folding model for many disulfide-rich proteins is that of hirudin. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and folds through plagued pathway that involve highly heterogeneous intermediates and scrambled isomers. The formation of scrambled species is known to limit the rate and efficiency of <i>in vitro</i> oxidative folding of many proteins.</p><p>In the current manuscript we describe our recent work, intended to overcome the limitations of scrambled isomers formation during oxidative protein folding. In this research we deeply investigate the utility of introducing diselenide bridges at the three native disulfide crosslinks as well as at a non-native position on hirudin’s folding, structure and function. Our studies demonstrated that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the hirudin analogs, while reducing the complexity and heterogeneity of the process, and reducing the formation of scrambled isomers.</p><p>A parallel, equally important, objective of our study was to test if diselenide substitutions have structural and functional effects. Crystal structure analysis as well as functional studies indicated that diselenide crosslinks maintained the overall structure of the protein without causing major changes in function and structure. To substantiate these conclusions, we provide inhibition studies and high-resolution crystal structure of the wild-type hirudin and its seleno-analogs. </p>Taken together, we believe that the choice of hirudin as the model in this study has implications beyond its specific folding mechanism, and will serve as a useful methodology for the <i>in vitro</i> oxidative folding of many complex disulfide-rich proteins.


2018 ◽  
Author(s):  
Bikash R. Sahoo ◽  
Takuya Genjo ◽  
Kanhu C. Moharana ◽  
Ayyalusamy Ramamoorthy

AbstractThe absence of detergent and curvature makes nanodiscs to be excellent membrane mimetics. The lack of structural and mechanistic model of polymer-encapsulated lipid-nanodiscs limits their use to study the structure, dynamics and function of membrane proteins. In this study, we parametrized and optimized the coarse-graining (CG) bead-mapping for two differently charged and functionalized copolymers, namely styrene-maleic acid (SMAEA) and polymethacrylate (PMAQA), for the Martini force-field framework and showed nanodisc formation (< 8 nm diameter) on a time scale of tens of microseconds using molecular dynamics (MD) simulation. Structural models of ~ 2.0 or 4.8 kDa PMAQA and ~2.2 kDa SMAEA polymer based lipid-nanodiscs highlights the importance of polymer chemical structure, size and polymer:lipid molar ratio in the optimization of nanodisc structure. The ideal spatial arrangement of polymers in nanodisc, nanodisc size and thermal stability obtained from our MD simulation correlates well with the experimental observations. The polymer-nanodisc were tested for the reconstitution of single-pass or multi-pass transmembrane proteins. We expect this study to be useful in the development of novel polymer based lipid-nanodiscs and for the structural studies of membrane proteins.TOC GRAPHICS


Sign in / Sign up

Export Citation Format

Share Document