scholarly journals Effective In Vitro Clearance ofPorphyromonas gingivalis by Fcα Receptor I (CD89) on Gingival Crevicular Neutrophils

2001 ◽  
Vol 69 (5) ◽  
pp. 2935-2942 ◽  
Author(s):  
Tetsuo Kobayashi ◽  
Kouji Yamamoto ◽  
Noriko Sugita ◽  
Annemiek B. van Spriel ◽  
Susumu Kaneko ◽  
...  

ABSTRACT Porphyromonas gingivalis has been implicated as a causative pathogen in periodontitis. Immunotherapeutic approaches have recently been suggested to aid in the clearance of P. gingivalis from disease sites. Because antibody-Fc receptor (FcR) interactions play a role in the effector functions of polymorphonuclear neutrophils (PMN), we evaluated which FcR on PMN from gingival crevicular fluid (GCF) serves as an optimal target molecule for FcR-directed immunotherapy. GCF PMN and peripheral blood (PB) PMN from adult periodontitis patients were analyzed for their immunoglobulin G (IgG) and IgA FcR (FcγR and FcαR, respectively) expression and function by studying IgG- and IgA-mediated elimination of P. gingivalis. GCF PMN exhibited higher FcαRI and FcγRI levels and lower FcγRIIa and FcγRIIIb levels than PB PMN. Functional studies revealed that GCF PMN exhibited less of a capacity to phagocytose and kill IgG1-opsonized P. gingivalisthan PB PMN. IgA1-mediated phagocytosis and killing capacity was, however, comparable between GCF PMN and PB PMN. In summary, these in vitro results document that FcαRI represents a candidate target for FcR-directed immunotherapy for the clearance of P. gingivalis.

2020 ◽  
Vol 18 (1) ◽  
pp. 391-398
Author(s):  
Shao-Hsuan Wu ◽  
Jun-Hui Huang

AbstractTwo novel mixed-ligand coordination polymers, {[Co(tdc)(btrp)]·0.67DMF}n (1) and {[Zn2(bimb)2(tdc)2]·2H2O}n (2) involving 2,5-thiophenedicarboxylate (H2tdc), and bitopic flexible N-donor ligands, 1,3-bis(1,2,4-triazol-1-yl)propane (btrp) and 1,4-bis((1H-benzo[d]imidazol-1-yl)methyl)benzene (bimb), have been synthesized by the hydrothermal method and characterized via IR, elemental analysis, thermal analysis, and powder X-ray diffraction. The biological functional studies were performed; the treatment activity of the compounds on periodontitis and the specific mechanism was explored. First, the real-time RT-PCR was carried out to determine the inflammatory genes nf-κb and p53 relative expression in periodontal mucosal cells after treating with compounds 1 and 2. Then, the level of the inflammatory cytokine in the gingival crevicular fluid after treating with compounds was also determined by the ELISA detection kit.


2021 ◽  
Vol 11 (6) ◽  
pp. 555
Author(s):  
Hammam Ibrahim Fageeh ◽  
Hytham N. Fageeh ◽  
Shankargouda Patil

Background: Periodontitis is an inflammatory condition of the tooth-supporting structures initiated and perpetuated by pathogenic bacteria present in the dental plaque biofilm. In periodontitis, immune cells infiltrate the periodontium to prevent bacterial insult. Macrophages derived from monocytes play an important role in antigen presentation to lymphocytes. However, they are also implicated in causing periodontal destruction and bystander damage to the host tissues. Objectives: The objective of the present study was to quantify the cytokine profile of gingival crevicular fluid (GCF) samples obtained from patients with periodontitis. The study further aimed to assess if GCF of periodontitis patients could convert CD14+ monocytes into macrophages of destructive phenotype in an in vitro setting. The secondary objectives of the study were to assess if macrophages that resulted from GCF treatment of monocytes could affect the synthetic properties, stemness, expression of extracellular matrix proteins, adhesion molecules expressed by gingival stem cells, gingival mesenchymal stromal cells, and osteoblasts. Methods: GCF, blood, and gingival tissue samples were obtained from periodontitis subjects and healthy individuals based on specific protocols. Cytokine profiles of the GCF samples were analyzed. CD14+ monocytes were isolated from whole blood, cultured, and treated with the GCF of periodontitis patients to observe if they differentiated into macrophages. Further, the macrophages were assessed for a phenotype by surface marker analysis and cytokine assays. These macrophages were co-cultured with gingival stem cells, epithelial, stromal cells, and osteoblasts to assess the effects of the macrophages on the synthetic activity of the cells. Results: The GCF samples of periodontitis patients had significantly higher levels of IFN gamma, M-CSF, and GM-CSF. Administration of the GCF samples to CD14+ monocytes resulted in their conversion to macrophages that tested positive for CD80, CD86, and CD206. These macrophages produced increased levels of IL-1β, TNF-α, and IL-6. Co-culture of the macrophages with gingival stem cells, epithelial cells, and stromal cells resulted in increased cytotoxicity and apoptotic rates to the gingival cells. A reduced expression of markers related to stemness, extracellular matrix, and adhesion namely OCT4, NANOG, KRT5, POSTN, COL3A1, CDH1, and CDH3 were seen. The macrophages profoundly affected the production of mineralized nodules by osteoblasts and significantly reduced the expression of COL1A1, OSX, and OCN genes. Conclusion: In periodontitis patients, blood-derived monocytes transform into macrophages of a destructive phenotype due to the characteristic cytokine environment of their GCF. Further, the macrophages affect the genotype and phenotype of the resident cells of the periodontium, aggravate periodontal destruction, as well as jeopardize periodontal healing and resolution of inflammation.


2016 ◽  
Vol 311 (6) ◽  
pp. C866-C873 ◽  
Author(s):  
R. Brent Thomson ◽  
Claire L. Thomson ◽  
Peter S. Aronson

The brush border Cl−-oxalate exchanger SLC26A6 plays an essential role in mediating intestinal secretion of oxalate and is crucial for the maintenance of oxalate homeostasis and the prevention of hyperoxaluria and calcium oxalate nephrolithiasis. Previous in vitro studies have suggested that SLC26A6 is heavily N-glycosylated. N-linked glycosylation is known to critically affect folding, trafficking, and function in a wide variety of integral membrane proteins and could therefore potentially have a critical impact on SLC26A6 function and subsequent oxalate homeostasis. Through a series of enzymatic deglycosylation studies we confirmed that endogenously expressed mouse and human SLC26A6 are indeed glycosylated, that the oligosaccharides are principally attached via N-glycosidic linkage, and that there are tissue-specific differences in glycosylation. In vitro cell culture experiments were then used to elucidate the functional significance of the addition of the carbohydrate moieties. Biotinylation studies of SLC26A6 glycosylation mutants indicated that glycosylation is not essential for cell surface delivery of SLC26A6 but suggested that it may affect the efficacy with which it is trafficked and maintained in the plasma membrane. Functional studies of transfected SLC26A6 demonstrated that glycosylation at two sites in the putative second extracellular loop of SLC26A6 is critically important for chloride-dependent oxalate transport and that enzymatic deglycosylation of SLC26A6 expressed on the plasma membrane of intact cells strongly reduced oxalate transport activity. Taken together, these studies indicated that oxalate transport function of SLC26A6 is critically dependent on glycosylation and that exoglycosidase-mediated deglycosylation of SLC26A6 has the capacity to profoundly modulate SLC26A6 function.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Frederic Ries ◽  
Astrid Alflen ◽  
Pamela Aranda Lopez ◽  
Hendrik Beckert ◽  
Matthias Theobald ◽  
...  

ABSTRACTThere is a growing body of evidence for immunomodulatory side effects of antifungal agents on different immune cells, e.g., T cells. Therefore, the aim of our study was to clarify these interactions with regard to the effector functions of polymorphonuclear neutrophils (PMN). Human PMN were preincubated with fluconazole (FLC), voriconazole (VRC), posaconazole (POS), isavuconazole (ISA), caspofungin (CAS), micafungin (MFG), conventional amphotericin B (AMB), and liposomal amphotericin B (LAMB). PMN then were analyzed by flow cytometry for activation, degranulation, and phagocytosis and by dichlorofluorescein assay to detect reactive oxygen species (ROS). Additionally, interleukin-8 (IL-8) release was measured by enzyme-linked immunosorbent assay. POS led to enhanced activation, degranulation, and generation of ROS, whereas IL-8 release was reduced. In contrast, ISA-pretreated PMN showed decreased activation signaling, impaired degranulation, and lower generation of ROS. MFG caused enhanced expression of activation markers but impaired degranulation, phagocytosis, generation of ROS, and IL-8 release. CAS showed increased phagocytosis, whereas degranulation and generation of ROS were reduced. AMB led to activation of almost all effector functions besides impaired phagocytosis, whereas LAMB did not alter any effector functions. Independent from class, antifungal agents show variable influence on neutrophil effector functionsin vitro. Whether this is clinically relevant needs to be clarified.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 352
Author(s):  
Jan-Luca Schmid ◽  
Martin Kirchberg ◽  
Sandra Sarembe ◽  
Andreas Kiesow ◽  
Anton Sculean ◽  
...  

Periodontal therapy using antimicrobials that are topically applied requires slow or controlled release devices. The in vitro antimicrobial activity of biodegradable polymer formulations that contain a new minocycline lipid complex (P-MLC) was evaluated. The new P-MLC formulations that contained 11.5% minocycline were compared with pure minocycline or an existing commercial formulation, which included determination of minimal inhibitory concentration (MIC) values against two oral bacteria and activity on six-species periodontal biofilm. Moreover, the flow of gingival crevicular fluid (GCF) was modeled up to 42 days and the obtained eluates were tested both for MIC values and inhibiting biofilm formation. In general, MICs of the P-MLC formulations were slightly increased as compared with pure minocycline. Biofilm formation was clearly inhibited by all tested formulations containing minocycline with no clear difference between them. In 3.5 day old biofilms, all formulations with 250 µg/mL minocycline decreased bacterial counts by 3 log10 and metabolic activity with no difference to pure antimicrobials. Eluates of experimental formulations showed superiority in antimicrobial activity. Eluates of one experimental formulation (P503-MLC) still inhibited biofilm formation at 28 days, with a reduction by 1.87 log10 colony forming units (CFU) vs. the untreated control. The new experimental formulations can easily be instilled in periodontal pockets and represent alternatives in local antimicrobials, and thus warrant further testing.


2001 ◽  
Vol 21 (3) ◽  
pp. 731-742 ◽  
Author(s):  
Josef Kuhn ◽  
Ulrike Tengler ◽  
Stefan Binder

ABSTRACT To determine the influence of posttranscriptional modifications on 3′ end processing and RNA stability in plant mitochondria, peaatp9 and Oenothera atp1 transcripts were investigated for the presence and function of 3′ nonencoded nucleotides. A 3′ rapid amplification of cDNA ends approach initiated at oligo(dT)-adapter primers finds the expected poly(A) tails predominantly attached within the second stem or downstream of the double stem-loop structures at sites of previously mapped 3′ ends. Functional studies in a pea mitochondrial in vitro processing system reveal a rapid removal of the poly(A) tails up to termini at the stem-loop structure but little if any influence on further degradation of the RNA. In contrast 3′ poly(A) tracts at RNAs without such stem-loop structures significantly promote total degradation in vitro. To determine the in vivo identity of 3′ nonencoded nucleotides more accurately, pea atp9 transcripts were analyzed by a direct anchor primer ligation-reverse transcriptase PCR approach. This analysis identified maximally 3-nucleotide-long nonencoded extensions most frequently of adenosines combined with cytidines. Processing assays with substrates containing homopolymer stretches of different lengths showed that 10 or more adenosines accelerate RNA processivity, while 3 adenosines have no impact on RNA life span. Thus polyadenylation can generally stimulate the decay of RNAs, but processivity of degradation is almost annihilated by the stabilizing effect of the stem-loop structures. These antagonistic actions thus result in the efficient formation of 3′ processed and stable transcripts.


2020 ◽  
Author(s):  
Yonggang Huang ◽  
Jin Zhang ◽  
Wei Dong ◽  
Huiping Peng ◽  
Maolin Gu ◽  
...  

Abstract Background Liver tumor-initiating cells (T-ICs) contribute to tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. Methods Real-time PCR was used to detect the expression of miR-96 in liver tumor-initiating cells (T-ICs). The impact of miR-96 on liver T-ICs expansion was investigated both in vivo and in vitro . The correlation between miR-96 expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results Our finding shows that miR-96 is upregulated in liver T-ICs. Functional studies revealed that forced miR-96 promotes liver T-ICs self-renewal and tumorigenesis. Conversely, knockdown miR-96 inhibits liver T-ICs self-renewal and tumorigenesis. Mechanistically, miR-96 downregulates SOX6 via its mRNA 3’UTR in liver T-ICs. Furthermore, the miR-96 expression determines the responses of hepatoma cells to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-96 may predict sorafenib benefits in HCC patients. Conclusion Our findings revealed the crucial role of the miR-96 in liver T-ICs expansion and sorafenib response, rendering miR-96 as an optimal target for the prevention and intervention of HCC.


2020 ◽  
Author(s):  
Reem Mousa ◽  
Taghreed Hidmi ◽  
Sergei Pomyalov ◽  
Shifra Lansky ◽  
Lareen Khouri ◽  
...  

<p>The oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. A well-known folding model for many disulfide-rich proteins is that of hirudin. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and folds through plagued pathway that involve highly heterogeneous intermediates and scrambled isomers. The formation of scrambled species is known to limit the rate and efficiency of <i>in vitro</i> oxidative folding of many proteins.</p><p>In the current manuscript we describe our recent work, intended to overcome the limitations of scrambled isomers formation during oxidative protein folding. In this research we deeply investigate the utility of introducing diselenide bridges at the three native disulfide crosslinks as well as at a non-native position on hirudin’s folding, structure and function. Our studies demonstrated that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the hirudin analogs, while reducing the complexity and heterogeneity of the process, and reducing the formation of scrambled isomers.</p><p>A parallel, equally important, objective of our study was to test if diselenide substitutions have structural and functional effects. Crystal structure analysis as well as functional studies indicated that diselenide crosslinks maintained the overall structure of the protein without causing major changes in function and structure. To substantiate these conclusions, we provide inhibition studies and high-resolution crystal structure of the wild-type hirudin and its seleno-analogs. </p>Taken together, we believe that the choice of hirudin as the model in this study has implications beyond its specific folding mechanism, and will serve as a useful methodology for the <i>in vitro</i> oxidative folding of many complex disulfide-rich proteins.


2021 ◽  
Vol 22 (17) ◽  
pp. 9162
Author(s):  
Shankargouda Patil ◽  
Mohammed E. Sayed ◽  
Maryam H. Mugri ◽  
Khalaf F. Alsharif ◽  
Arif Salman ◽  
...  

We evaluated the role of allicin in periodontitis using an in silico and in vitro design. An in silico docking analysis was performed to assess the plausible interactions between allicin and PD-L1. The cytokine profile of gingival crevicular fluid (GCF) samples obtained from periodontitis patients was estimated by cytometric bead array. CD3+ lymphocytes isolated from the peripheral blood were sorted and characterized using immunomagnetic techniques. Cultured and expanded lymphocytes were treated with the GCF samples to induce T-cell exhaustion. Optimum concentrations of allicin were added to exhausted lymphocytes to compare the expression of TIM-3 and LAG-3 gene expression at baseline and post-treatment. Allicin was found to bind to the PD-L1 molecule as revealed by the in-silico experiment, which is possibly an inhibitory interaction although not proven. GCF from periodontitis patients had significantly higher concentrations of TNF-α, CCL2, IL-6, IFN-γ, and CXCL8 than controls. GCF treatment of CD3+ lymphocytes from the periodontitis patients significantly increased expression of T-cell exhaustion markers TIM-3 and LAG-3. Allicin administration with GCF treatment resulted in significant lowering of the expression of exhaustion markers. Allicin may exert an immunostimulatory role and reverse immune-destructive mechanisms such as T-cell exhaustion.


Sign in / Sign up

Export Citation Format

Share Document