scholarly journals Self-Humidifying Membrane for High-Performance Fuel Cells Operating at Harsh Conditions: Heterojunction of Proton and Anion Exchange Membranes Composed of Acceptor-Doped SnP2O7 Composites

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 776
Author(s):  
Pilwon Heo ◽  
Mijeong Kim ◽  
Hansol Ko ◽  
Sang Yong Nam ◽  
Kihyun Kim

Here we suggest a simple and novel method for the preparation of a high-performance self-humidifying fuel cell membrane operating at high temperature (>100 °C) and low humidity conditions (<30% RH). A self-humidifying membrane was effectively prepared by laminating together proton and anion exchange membranes composed of acceptor-doped SnP2O7 composites, Sn0.9In0.1H0.1P2O7/Sn0.92Sb0.08(OH)0.08P2O7. At the operating temperature of 100 °C, the electrochemical performances of the membrane electrode assembly (MEA) with this heterojunction membrane at 3.5% RH were better than or comparable to those of each MEA with only the proton or anion exchange membranes at 50% RH or higher.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ebrahim Abouzari-Lotf ◽  
Mohan V. Jacob ◽  
Hossein Ghassemi ◽  
Masoumeh Zakeri ◽  
Mohamed Mahmoud Nasef ◽  
...  

AbstractTwo novel types of anion exchange membranes (AEMs) having imidazolium-type functionalised nanofibrous substrates were prepared using the facile and potentially scalable method. The membranes’ precursors were prepared by graft copolymerization of vinylbenzyl chloride (VBC) onto syndiotactic polypropylene (syn-PP) and polyamide-66 (PA-66) nanofibrous networks followed by crosslinking with 1,8-octanediamine, thermal treatment and subsequent functionalisation of imidazolium groups. The obtained membranes displayed an ion exchange capacity (IEC) close to 1.9 mmol g–1 and ionic (OH-) conductivity as high as 130 mS cm–1 at 80 °C. This was coupled with a reasonable alkaline stability representing more than 70% of their original conductivity under accelerated degradation test in 1 M KOH at 80 °C for 360 h. The effect of ionomer binder on the performance of the membrane electrode assembly (MEA) in AEM fuel cell was evaluated with the optimum membrane. The MEA showed a power density of as high as 440 mW cm−2 at a current density is 910 mA cm−2 with diamine crosslinked quaternized polysulfone (DAPSF) binder at 80 °C with 90% humidified H2 and O2 gases. Such performance was 2.3 folds higher than the corresponding MEA performance with quaternary ammonium polysulfone (QAPS) binder at the same operating conditions. Overall, the newly developed membrane was found to possess not only an excellent combination of physico-chemical properties and a reasonable stability but also to have a facile preparation procedure and cheap ingredients making it a promising candidate for application in AEM fuel cell.



Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 690
Author(s):  
Ji Eon Chae ◽  
So Young Lee ◽  
Sung Jong Yoo ◽  
Jin Young Kim ◽  
Jong Hyun Jang ◽  
...  

Polystyrene-based polymers with variable molecular weights are prepared by radical polymerization of styrene. Polystyrene is grafted with bromo-alkyl chains of different lengths through Friedel–Crafts acylation and quaternized to afford a series of hydroxide-ion-conducting ionomers for the catalyst binder for the membrane electrode assembly in anion-exchange membrane fuel cells (AEMFCs). Structural analyses reveal that the molecular weight of the polystyrene backbone ranges from 10,000 to 63,000 g mol−1, while the ion exchange capacity of quaternary-ammonium-group-bearing ionomers ranges from 1.44 to 1.74 mmol g−1. The performance of AEMFCs constructed using the prepared electrode ionomers is affected by several ionomer properties, and a maximal power density of 407 mW cm−2 and a durability exceeding that of a reference cell with a commercially available ionomer are achieved under optimal conditions. Thus, the developed approach is concluded to be well suited for the fabrication of next-generation electrode ionomers for high-performance AEMFCs.





2020 ◽  
Vol 166 (16) ◽  
pp. F1308-F1313
Author(s):  
Shengchu Liu ◽  
Shang Li ◽  
Ruyi Wang ◽  
Yan Rao ◽  
Qing Zhong ◽  
...  


Author(s):  
Jonghyun Hyun ◽  
Seok-Hwan Yang ◽  
Gisu Doo ◽  
Sungyu Choi ◽  
Dong-Hyun Lee ◽  
...  

The durability of the membrane electrode assembly (MEA) is one of the important requirements for the successful commercialization of anion exchange membrane fuel cells (AEMFCs). While chemical stabilities of the...



2021 ◽  
Vol 624 ◽  
pp. 119116
Author(s):  
Jiuyang Lin ◽  
Junming Huang ◽  
Jing Wang ◽  
Junwei Yu ◽  
Xinqiang You ◽  
...  


2014 ◽  
Vol 470 ◽  
pp. 229-236 ◽  
Author(s):  
Jin Ran ◽  
Liang Wu ◽  
Qianqian Ge ◽  
Yaoyao Chen ◽  
Tongwen Xu


2021 ◽  
Vol 221 ◽  
pp. 281-290
Author(s):  
Muhammad Imran Khan ◽  
Jinzhan Su ◽  
Liejin Guo


2019 ◽  
Vol 41 (1) ◽  
pp. 901-907 ◽  
Author(s):  
Xinyu Huang ◽  
William A. Rigdon ◽  
Jay Neutzler ◽  
Diana Larrabee ◽  
Joshua Sightler


Sign in / Sign up

Export Citation Format

Share Document