scholarly journals Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO) Hybrids: A Critical Review

Membranes ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 37 ◽  
Author(s):  
Gaetan Blandin ◽  
Arne Verliefde ◽  
Joaquim Comas ◽  
Ignasi Rodriguez-Roda ◽  
Pierre Le-Clech
2014 ◽  
Vol 69 (12) ◽  
pp. 2431-2437 ◽  
Author(s):  
C. Kazner ◽  
S. Jamil ◽  
S. Phuntsho ◽  
H. K. Shon ◽  
T. Wintgens ◽  
...  

While high quality water reuse based on dual membrane filtration (membrane filtration or ultrafiltration, followed by reverse osmosis) is expected to be progressively applied, treatment and sustainable management of the produced reverse osmosis concentrate (ROC) are still important issues. Forward osmosis (FO) is a promising technology for maximising water recovery and further dewatering ROC so that zero liquid discharge is produced. Elevated concentrations of organic and inorganic compounds may act as potential foulants of the concentrate desalting system, in that they consist of, for example, FO and a subsequent crystallizer. The present study investigated conditions under which the FO system can serve as concentration phase with the focus on its fouling propensity using model foulants and real ROC. Bulk organics from ROC consisted mainly of humic acids (HA) and building blocks since wastewater-derived biopolymers were retained by membrane filtration or ultrafiltration. Organic fouling of the FO system by ROC-derived bulk organics was low. HA was only adsorbed moderately at about 7% of the initial concentration, causing a minor flux decline of about 2–4%. However, scaling was a major impediment to this process if not properly controlled, for instance by pH adjustment or softening.


2018 ◽  
Vol 77 (8) ◽  
pp. 1990-1997 ◽  
Author(s):  
Shahzad Jamil ◽  
Sanghyun Jeong ◽  
Saravanamuthu Vigneswaran

Abstract Reverse osmosis concentrate (ROC) from wastewater reclamation plants have high concentrations of organic and inorganic compounds, which have to be removed before its disposal. Forward osmosis (FO) and nanofiltration (NF) membranes were tested to treat the ROC for possible water reuse. This research investigated the combined and individual influence of organic and inorganic matter on the fouling of NF and FO membranes. The results revealed that the NF membrane removed most of the organic compounds and some inorganics. The study further highlighted that the FO membrane at NF mode removed the majority of the inorganic compounds and some organics from the ROC. A pretreatment of granulated activated carbon (GAC) adsorption removed 90% of the organic compounds from ROC. In addition, GAC adsorption and acid pretreatment of ROC improved the net water permeate flux by 17% when an FO membrane was used in the NF system. Acid treatment (by bringing the pH down to 5) helped to remove inorganic ions. Therefore, the resultant permeate can be recycled back to the RO water reclamation plant to improve its efficiency.


Desalination ◽  
2011 ◽  
Vol 280 (1-3) ◽  
pp. 160-166 ◽  
Author(s):  
Victor Yangali-Quintanilla ◽  
Zhenyu Li ◽  
Rodrigo Valladares ◽  
Qingyu Li ◽  
Gary Amy

Author(s):  
Rachel C. Scholes ◽  
Angela N. Stiegler ◽  
Cayla M. Anderson ◽  
David L. Sedlak

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 588
Author(s):  
Eiji Kamio ◽  
Hiroki Kurisu ◽  
Tomoki Takahashi ◽  
Atsushi Matsuoka ◽  
Tomohisa Yoshioka ◽  
...  

Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.


2016 ◽  
Vol 6 (4) ◽  
pp. 533-543 ◽  
Author(s):  
W. D. Wang ◽  
M. Esparra ◽  
H. Liu ◽  
Y. F. Xie

This study evaluated the feasibility of forward osmosis (FO) in diluting and reusing the concentrate produced in a reverse osmosis (RO) plant in James City County, VA. Secondary treated wastewater (STW) was used as the feed solution. Findings indicated that pH had slight effects on the water flux of the FO membrane. As the concentration of total dissolved solids (TDS) in the concentrate was diluted from 12.5 to 1.0 g/L or the temperature in the STW decreased from 23 to 10 °C, the membrane flux decreased from 2.2 to 0.59 and 0.81 L/(m2 h), respectively. The FO membrane showed a good performance in the rejection of organic pollutants, with only a small part of the protein-like substances and disinfection byproducts permeating to the diluted concentrate. During an 89-hour continuous operation, water flux decline due to membrane fouling was not observed. Controlling the TDS in the second-stage FO effluent at 1.5 g/L, approximately 8.3% of the pump energy input could be saved. The consumption of groundwater was reduced from 22.7 × 103 to 10.6 × 103 m3/d. FO was proved to be an effective method in both diluting the discharged concentrate and reducing the energy consumption of RO.


2018 ◽  
Vol 565 ◽  
pp. 241-253 ◽  
Author(s):  
Farrukh Arsalan Siddiqui ◽  
Qianhong She ◽  
Anthony G. Fane ◽  
Robert W. Field

Sign in / Sign up

Export Citation Format

Share Document