scholarly journals Removal of Copper, Nickel, and Iron from Lead–Tin Composite by Segregation of Intermetallic Silicon Phases

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Stefan Jessen ◽  
Danilo C. Curtolo ◽  
Bernd Friedrich

In the reduction stage of the secondary copper production process, copper, nickel, lead, and tin are collected in a “black copper”, while zinc is volatilized and precipitated as ZnO in the flue dust. The slag coming from this reduction stage is low in valuable metals and is disposed. In the conversion stage, lead and tin are oxidized and incorporated in the slag phase; in accordance with the oxygen potential, this “converter slag” also contains higher contents of copper and nickel. This slag is then reduced in two stages. From the first stage, a copper–nickel metal is returned to the converter stage, and in the second stage, a crude PbSn composite with copper contents of around 10% and nickel contents of around 2.5%, as well as a further usable slag, is obtained from the “secondary” slag. Iron is used as a reducing agent, so that the metal obtained can contain iron of up to over 10%, depending on the reduction duration. The motivation of this investigation is to provide a method for the subsequent refining of the raw PbSn composite, with the aim of obtain a saleable PbSn composite as well as returning the copper and nickel contents quantitatively to the main copper route or to sell them as an alloy. Therefore, the present work aims to investigate the refining of the raw PbSn composite by the separation of the copper, nickel, and iron via the segregation of intermetallic phases. For that, a series of experiments were performed on the formation and subsequent segregation of intermetallic phases, by introduction of an additional element to the system. The results indicated sharper separation of PbSn composite and copper, nickel, and iron due to the higher thermodynamic stability of these phases (selectivity).

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 712
Author(s):  
Alvaro Aracena ◽  
Andrés Valencia ◽  
Oscar Jerez

In pyrometallurgical processes refining copper, the main source of loss in the conversion stage is from slag. This paper reports on research work treating converter slag containing high percentages of copper (36 wt%) using ammonium hydroxide at room temperature. Variables analyzed are solution pH, agitation, temperature, NH4OH concentration and particle size. Results showed that the hydronium ion resulting from ammonium hydroxide dissociation was the main oxidant of copper compounds in slag, such as CuO, Cu2O and Cu, with the exception of CuFeO2. The particles contain a large amount of microcracks (porosity) in their refractory structure (analyzed by compositional image capture (BSE)). Thus, the diffusion of the leaching solution through the microcracks making contact with the copper oxides would be allowed. Leaching mechanisms were corroborated by X-ray diffraction and scanning electron microscopy analysis. Increasing temperature and NH4OH concentration while decreasing particle size obtained higher copper recoveries, reaching values of 84.8%. Under the same conditions, the main impurity (iron) was minimal (<2%). Solution pH also affected slag leaching. Agitation of the solution positively affected the rate of copper extraction. Leaching kinetics of the leaching solution through the porosity formed in the slag was analyzed under the intraparticle diffusion model. The reaction order was 1.2 with respect to the concentration of ammonium hydroxide and the model was inversely proportional to the square of the particle radius. The activation energy obtained was 42.3 kJ/mol for temperature range 283 to 333 K.


2019 ◽  
Vol 2 (2) ◽  
pp. 1-11
Author(s):  
Dana Baricová ◽  
Alena Pribulová ◽  
Branislav Buľko ◽  
Peter Demeter

Abstract In the technological process of the steelmaking plant, secondary products are produced in parallel with the production of the main product, which have the character of secondary by products or industrial waste. The major secondary products of steelmaking production include waste gases, process fluids, flue dust, sludge, slags and mill scales. The paper presents the results of research project directed to the utilization of demetallized steelmaking slag and oxygen converter flue dust in charge of top blowed oxygen converter. The influence of demetallized slag additions on slag regime in converter and chemical composition of final slag is described and discussed. Recommendations concerning amount of demetallized slag additions are also presented. Flue dust was recycled in form of briquettes. No significant effect of the recycling demetallized converter slag and flue dust briquette on process of hot metal refining and on quality of produced steel were recorded. Regarding the achieved results it can be confirmed that the use of the secondary products like demetallized slag and convertor flue dust in form briquettes, is environmentally acceptable as well as the use of natural materials and poses no increased risk to human health or the environment.


1999 ◽  
Vol 40 (3) ◽  
pp. 214-221 ◽  
Author(s):  
K. D. Mehta ◽  
B. D. Pandey ◽  
Premchand

2014 ◽  
Vol 2 ◽  
pp. 107-139 ◽  
Author(s):  
D.L. Beke ◽  
Zoltán Erdélyi ◽  
G.L. Katona

Two interesting features of formation and growth of intermetallic phases in nanoscale solid state reactions will be discussed:Linear-parabolic “normal” growth: it will be summarized that at the very early stages of the growth of an already existing new phase (i.e. when nucleation problems can be neglected) the linear kinetics can be observed due to the so-called diffusion asymmetry. Indeed, it was shown that if the ratio of the diffusion coefficients differ by orders of magnitude in the parent materials (and so also in the new phase), during the growth of a phase bordered by parallel interfaces from the parent phases (normal growth geometry), the shift of the individual interfaces can be linear at the beginning and a transition to the parabolic regime can take place even after a shift of several tens of nanometres. In addition, an AB compound in contact with the pure A and B phases can be dissolved if the diffusion in B is much faster than in either A and AB. This means that the thickness of this phase should decrease, or even can be fully dissolved, at the beginning and only after some time—when the composition in B will be high enough allowing the re-nucleation of this AB phase—will the AB phase grow further.The common problem oftwo stages of solid state reactionswill be revisited: usually the growth can be divided into two stages: a) the formation (nucleation) and lateral growth of the new phases and b) the “normal” growth of the already continuous phase. It was concluded in different previous reviews that in stage b) in the majority of cases the parabolic growth was observed in accordance with the above i) point: the linear-parabolic transition length was typically below 1 μm, which was the lower limit of detection in many previous investigations. On the other hand recently the application of the linear-parabolic growth law for the analysis of experimental data obtained in nanoscale reactions became very popular, not making a clear distinction between a) and b) stages. It will be emphasized here that care should be taken in all cases when the experimental methods applied provide information only about the increase of the amount of the reaction product and there is no informationwhere and howthe new phase (s) grow. We have illustrated in a series of low temperature experiments - where the bulk diffusion processes are frozen - that even in this case a full homogeneous phase can be formed by cold homogenization called Grain Boundary Diffusion Induced Solid State Reaction (GBDIREAC). In this case first the reaction starts by grain-boundary (GB) diffusion and nucleation of the new phase at GBs or their triple junctions, then the growth of the new phase happens by the shift of the new interfaces perpendicular to the original GB. This is a process similar to the diffusion induced grain-boundary motion (DIGM) or diffusion induced recrystallization (DIR) phenomena and in this case the interface shift, at least in the first stage of the reaction until the parent phases have been consumed, can be considered constant. This means that the amount of the phase increases linearly with time, giving a plausible explanation for the linear kinetics frequently observed in stage a).


2020 ◽  
Vol 21 (1) ◽  
pp. 48-57
Author(s):  
Alexander E. Kotelnikov ◽  
Daria A. Kolmakova ◽  
Elena M. Kotelnikova

The purpose of the article is to determine the sequence of mineral formation of copper-nickel ores of Kun-Manie deposit, which is located in Zeya district of Amur region. Three ore chutes take part in the structure of the deposit. Ore-bearing formations are sheet and sheetlike bodies of ultra-basic composition of the Kun-Manien complex, lying among rocks of crystal foundation of the Early Archean. Among the rocks, hornblende differences of gabbro-pyroxenites and pyroxenites predominate. In addition to nickel, the ores contain a wide range of associated components. The ores oxidation zone within the deposit and the entire ore field is not developed. The relevance of the work is due to the fact that detailed studies of ore minerals have not previously been carried out. The study presented in the work was conducted by polarizing ore microscope on polished ore samples characterizing different zones of the ore body. The result of the study was the establishment of mineral paragenesis and the sequence of mineral formation. It has been determined that the main ore minerals are pyrrhotine, pentlandite, also found - pyrite, chalcopyrite, less often - ilmenite, magnetite, sphalerite, platinum group elements. Ore mineralization formed in two stages. The magmatic stage is an early and main mineral formation phases including pyrite-magnetite, polymetallic and pentlandite associations. The hydrothermal stage is a late phase involving a pyrite association.


2009 ◽  
Vol 50 (6) ◽  
pp. 577-581 ◽  
Author(s):  
E. N. Selivanov ◽  
O. V. Nechvoglod ◽  
L. Yu. Udoeva ◽  
V. G. Lobanov ◽  
S. V. Mamyachenkov

Author(s):  
Dale E. Bockman ◽  
L. Y. Frank Wu ◽  
Alexander R. Lawton ◽  
Max D. Cooper

B-lymphocytes normally synthesize small amounts of immunoglobulin, some of which is incorporated into the cell membrane where it serves as receptor of antigen. These cells, on contact with specific antigen, proliferate and differentiate to plasma cells which synthesize and secrete large quantities of immunoglobulin. The two stages of differentiation of this cell line (generation of B-lymphocytes and antigen-driven maturation to plasma cells) are clearly separable during ontogeny and in some immune deficiency diseases. The present report describes morphologic aberrations of B-lymphocytes in two diseases in which second stage differentiation is defective.


Sign in / Sign up

Export Citation Format

Share Document