scholarly journals Effect of Electric Current Heat Treatment on Commercially Pure Titanium Sheets

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 783
Author(s):  
Chan-Hyeok Lee ◽  
Seong-Woo Choi ◽  
P. L. Narayana ◽  
Thi Anh Nguyet Nguyen ◽  
Sung-Tae Hong ◽  
...  

Rapid electric current heat treatment has been successfully applied to a cold-rolled sheet of commercially pure titanium (CP Ti). The electric current heat treatment was conducted at various temperatures (400, 500, 600 and 700 ∘C) by altering the current density (A/mm2). The detailed microstructure and texture evolution was studied using electron backscatter and X-ray diffraction analysis. For comparison, conventional heat treatment at 400, 500 and 600 ∘C were also applied to the cold-rolled sheets. The electrically heat-treated sample showed a much smaller and uniform grain size with a relatively weak texture than the conventionally heat-treated one. As a result, the electrically heat-treated samples exhibited better tensile properties than conventionally heat-treated samples. Furthermore, the electric current treatment produced minimum sheet distortion and good oxidation resistance compared with the conventional heat treatment.

2011 ◽  
Vol 493-494 ◽  
pp. 926-929
Author(s):  
Seung Hoon Um ◽  
Sang Hoon Rhee

Effect of oxide layer formed on commercially pure titanium by heat-treatment on adhesion of serum proteins and differentiation activity of osteoblasts. Commercially pure titanium disks were polished and then heat-treated at 700°C for 30 minutes. Titanium oxide layer (rutile phase) was observed to form on the titanium disk surface after heat-treatment. The contact angle of a water droplet on the heat-treated titanium disk was about 14o while that of non-heat treated one was about 68o. The amount of adsorbed total serum protein on heat-treated titanium disk was four times higher than that on non-heat treated one. ALP activity of primary cultured mouse calvarial osteoblasts on heat-treated titanium disk was also higher than that on non-heat treated one with statistical significance of p < 0.05. It implies that the serum proteins preferentially adsorbed on titanium oxide layer formed on commercially pure titanium and it is likely to enhance the differentiation activity of primary cultured mouse cultured osteoblasts.


2013 ◽  
Vol 753 ◽  
pp. 289-292
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix

EBSD investigation of texture and microstructure evolution during a complete thermomechanical treatment of commercially pure titanium (HCP-Ti) is presented. Titanium was cold rolled to reach various degrees of thickness reduction: 20%, 40% and 60%. Next, annealing in air atmosphere was conducted at different conditions to achieve the recrystallized state. EBSD topological maps were measured on RD-TD and RD-ND surface of each sample. Strong heterogeneity of deformed titanium microstructures is described with focus on the important role of twinning mechanisms. Texture evolution in investigated titanium appears to be limited, especially in recrystallized state. However some subtle mechanisms are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Akiko Obata ◽  
Eri Miura-Fujiwara ◽  
Akimitsu Shimizu ◽  
Hirotaka Maeda ◽  
Masaaki Nakai ◽  
...  

Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy has excellent mechanical properties and bone conductivity. For dental application, TNTZ surfaces were converted to white oxidized layer by a simple heat treatment in air to achieve the formation of aesthetic surfaces. The oxidized layer formed by the heat treatment at 1000°C for 0.5 or 1 hr was whiter and joined to TNTZ substrate more strongly than that formed by the treatment at 900°C. The layer consisted of TiO2(rutile), TiNb2O7, and TiTa2O7and possessed ~30 μm in thickness for the sample heat-treated at 1000°C and ~10 μm for that heat-treated at 900°C. The surface average roughness and the wettability increased after the heat treatment. The spreading and proliferation level of mouse osteoblast-like cell (MC3T3-E1 cell) on the heat-treated sample were almost the same as those on as-prepared one. The cell spreading on TNTZ was better than those on pure titanium (CP Ti) regardless of the heat treatment for the samples. There was no deterioration in thein vitrocell compatibility of TNTZ after the oxidized layer coating by the heat treatment.


2005 ◽  
Vol 495-497 ◽  
pp. 711-718 ◽  
Author(s):  
N. Dewobroto ◽  
Nathalie Bozzolo ◽  
Francis Wagner

The mechanisms governing the very first stage of static recrystallization in two hexagonal alloys (commercially pure titanium and low alloyed zirconium) are investigated in this paper. Initially fully recrystallized and equiaxed materials were cold-rolled to 80% thickness reduction and subsequently recrystallized at 500°C for short times. High resolution EBSD maps were acquired in a FEG-SEM before and after annealing in order to see where and how the new grains appear. Nonoriented nucleation mechanisms are involved in both materials, and there is a strong correlation between the local deformation substructures and the recrystallization kinetics. Recrystallization is extremely fast in the areas where the deformation cells are small and highly misoriented, i.e. in the areas which underwent severe grain fragmentation. Twinning plays an important role for that purpose in the studied titanium sheet.


2020 ◽  
Vol 321 ◽  
pp. 09005
Author(s):  
La Chance LEPEMANGOYE ◽  
Nicolas CRETON ◽  
Virgil OPTASANU ◽  
Elise DELOYE ◽  
Tony MONTESIN ◽  
...  

In this article, we study the impact of rolling conditions on the texture of the commercially pure titanium grade 2. In a previous work, NEOTISS in collaboration with ICB laboratory, shown that the texture highly influences the precipitation of hydrides in Titanium. In order to create different textures, Titanium sheets grade 2 are cold rolled asymmetrically and symmetrically with or without lubricant. The inverse pole figures and direct pole figures obtained allow us to deduce that symmetrical cold rolling does not change the grains orientation but generates a rotation of grains along c-axis (normal to basal plan). However, asymmetrical cold rolling leads to the formation of a new crystallographic texture, which could limit the formation of the hydrides in titanium grade 2 submitted to a hydrogen-rich environment. Key words: asymmetrical rolling, symmetrical rolling, titanium, hydriding, texture


2020 ◽  
Vol 178 ◽  
pp. 39-43 ◽  
Author(s):  
Yanhong Chang ◽  
Siyuan Zhang ◽  
Christian H. Liebscher ◽  
David Dye ◽  
Dirk Ponge ◽  
...  

2014 ◽  
Vol 45 (4) ◽  
pp. 1579-1579 ◽  
Author(s):  
Hasan Alkhazraji ◽  
Mohammed Z. Salih ◽  
Zhengye Zhong ◽  
Mansour Mhaede ◽  
Heinz-Günter Brokmeier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document