scholarly journals Extension of Gap Bridgeability and Prevention of Oxide Lines in the Welding Seam through Application of Tools with Multi-Welding Pins

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1219
Author(s):  
Marcel Hatzky ◽  
Stefan Böhm

Friction stir welding has become important in many areas of production and is increasingly used for joining aluminum components. For long welding seams, conventional tools with only one welding pin reach their technical limitations due to low gap bridgeability. When welding aluminum, the stirred in surface layers, such as oxides, lead to a decrease in static and dynamic strength since linear accumulations are formed in the welding seam. The aim of the present study is to increase the gap bridgeability using tools with various welding pins and to prevent linear accumulation in the welding seam. The results show that a gap bridgeability of up to 2 mm for 4 mm material thickness is possible for the aluminum alloys EN AW 5083 H111 and EN AW 7020 T651. With the help of multi-pin tools, no impact of the gap width on the tensile strength was observed for joint gaps of up to 0.9 mm when using butt joint with a sheet thickness of 4 mm. Furthermore, the use of multi-pin tools showed significant influence on the prevention of linear accumulations in the welding seam. In addition, the oxide layers were finely distributed in welded joints using multi-pin tools.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 933
Author(s):  
SeongHwan Park ◽  
YoungHwan Joo ◽  
Myungchang Kang

Thin sheets of lightweight aluminum alloys, which are increasingly used in automotive, aerospace, and electronics industries to reduce the weight of parts, are difficult to weld. When applying micro-friction stir welding (μ-FSW) to thin plates, the heat input to the base materials is considerably important to counter the heat loss to the jig and/or backing plate. In this study, three different backing-plate materials—cordierite ceramic, titanium alloy, and copper alloy—were used to evaluate the effect of heat loss on weldability in the μ-FSW process. One millimeter thick AA6061-T6 and AA5052-H32 dissimilar aluminum alloy plates were micro-friction stir welded by a butt joint. The tensile test, hardness, and microstructure of the welded joints using a tool rotational speed of 9000 rpm, a welding speed of 300 mm/min, and a tool tilting angle of 0° were evaluated. The heat loss was highly dependent on the thermal conductivity of the backing plate material, resulting in variations in the tensile strength and hardness distribution of the joints prepared using different backing plates. Consequently, the cordierite backing plate exhibited the highest tensile strength of 222.63 MPa and an elongation of 10.37%, corresponding to 86.7% and 58.4%, respectively, of those of the AA5052-H32 base metal.


Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


2013 ◽  
Vol 465-466 ◽  
pp. 1309-1313
Author(s):  
Mohd Hasbullah Idris ◽  
Mohd Shamsul Husin

The present study is aimed to determine the effect of friction stir welding pin; square and diamond shape on mechanical properties of butt joint AA6061 weldment. Welding was carried out at different plunge depths of 0.0, 0.2, 0.3 and 0.4 mm together with rotation and transverse speeds of 500 rpm and 40 mm/min, respectively. Material flow, tensile strength and hardness of the weldment were evaluated. The results indicated that joint properties were significantly affected by tool design. It was found that material flow was higher for diamond pin tool compared to that of square pin resulting in considerable increased in tensile strength of the joint. In addition, the highest tensile strength was obtained on the samples welded with square shape pin at 0.4 mm plunge depth whilst the lowest was by diamond shape at the plunge depth of 0.0 mm. Regardless of pin shape and plunge depth; asymmetrical hardness distribution was observed for all weldments. The highest hardness was found to be close to the weld line produced by the diamond shaped pin at 0.0 mm plunge depth.


2021 ◽  
Author(s):  
Bazani Shaik ◽  
Gosala Harinath Gowd ◽  
Bandaru Durga Prasad

Today is an era of metals including Aluminum alloys owing to a fundamental paradigm shift in research objectives. In addition to superior performance and lightweight criteria that are used to define the innovations of yore, scientists today are compelled to take into consideration the environment-friendliness of the new and novel materials being developed due to the concerns of maintaining a sustainable and safe existence. The solid-state Friction stir welding process has immense potential in the areas of automobiles, aerospace and construction industries due to its overwhelming advantages over the conventional fusion welding process of aluminum alloys. The thesis presents an experimental investigation of friction stir welding of dissimilar aluminum alloys AA7075T651 and AA6082T651. Mathematical modeling equations are developed to predict the tensile strength, impact strength, elongation, and micro-hardness of the dissimilar FSW joints AA7075T651 and AA6082T651. The process parameters are optimized for maximum tensile strength and hardness values. Post weld heat treatment is conducted and the metallurgical properties of the FS welded AA7075T651 and AA6082T651 are presented for different combinations of tool rotational speeds. Aluminum and its alloys are widely used in nonferrous alloys for many industrial applications. Aluminum exhibits a combination of an excellent mechanical strength with lightweight and thus it is steadily replacing steel in industrial applications where the strength to weight ratio plays a significant role. In conventional welding, the joining of aluminum is mainly associated with a high coefficient of thermal expansion, solidification shrinkage and dissolution of harmful gases in the molten metal during welding. The weld joints are also associated with segregation of secondary alloys and porosities which are detrimental to the joint qualities. Friction Stir Welding (FSW) and Friction Welding (FW) are the most popular emerging solid welding techniques in aircraft and shipbuilding industries. FSW is mainly used for the joining of metal plates and FW is mainly used for the joining of rods. Both techniques are suitable for high strength material having less weight. These techniques are environmentally friendly and easy to execute. Hence, the study of these techniques can contribute much to the field of green technology. This research work is dealt with the experimental and numerical investigations on FSW and FW of aluminum alloys.


Author(s):  
K. Anganan ◽  
R.J . Narendran ◽  
N Naveen Prabhu ◽  
R Rahul Varma ◽  
R Sivasubramaniyam

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


2016 ◽  
Vol 857 ◽  
pp. 266-270 ◽  
Author(s):  
Ho Sung Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min

Aluminum-copper-lithium alloy is a light weight metal that has been used as substitute for conventional aerospace aluminum alloys. With addition of Li element, it has lower density but higher strength. However these aluminum alloys are hard to weld by conventional fusion welding, since they often produce porosities and cracking in the weld zone. It is known that solid state welding like friction stir welding is appropriate for joining of this alloy. In this study, friction stir welding was performed on AA2195 sheets, in butt joint configuration in order to understand effects of process parameters on microstructure and mechanical properties in the weld zone. The results include the microstructural change after friction stir welding with electron microscopic analysis of precipitates.


2014 ◽  
Vol 984-985 ◽  
pp. 604-607 ◽  
Author(s):  
V. Jaiganesh ◽  
P. Sevvel

In the Present paper, the effects of axial force, rotational speed of the FSW tool, welding speed and shoulder penetration on various mechanical properties of Aluminium alloy 6063 butt joint produced by Friction Stir Welding have been analyzed. The mechanical properties like tensile strength, Yield strength and % Elongation have been tested using 6 mm thickness plate. The tool used for conducting the experiment was Hot Die Steel (HDS). The welding quality can be improved by enhancing the mechanical properties and minimizing the defects. Hence, analysing & examining the mechanical or physical properties and other relevant significant factors would help to enhance the weld reliability. Tensile Strength (TS), Percentage of Elongation & Yield Strength (YS) of FSW Al 6063 alloy has been carried out under different processing condition using Taguchi’s experimental design. An optimum result has been obtained using main effects plot using S/N ratio values. The rotation speed of the FSW tool has been found dominant factor for TS followed by feed and shoulder penetration. Shoulder diameter shows the least effect on TS compared to parameters like Percentage of Elongation & Yield Strength (YS).


2015 ◽  
Vol 4 (1) ◽  
pp. 145-153 ◽  
Author(s):  
Kittipong Kimapong ◽  
Jesada Kaewwichit ◽  
Waraporn Roybang ◽  
Pramote Poonnayom ◽  
Sakchai Chantasri

Sign in / Sign up

Export Citation Format

Share Document