scholarly journals Effect of Sputter Deposition on the Adhesion and Failure Behavior between Cu Film and Glassy Calcium Aluminosilicate: A Molecular Dynamics Study

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1365
Author(s):  
Hyunhang Park ◽  
Sunghoon Lee

Understanding the physical vapor deposition (PVD) process of metallic coatings on an inorganic substrate is essential for the packaging and semiconductor industry. In this work, we investigate a Copper (Cu) film deposition on a glassy Calcium Aluminosilicate (CAS) by PVD and its dependence on the incident energy. Molecular dynamics simulation is adopted to mimic the deposition process, and pure Cu film is grown on top of CAS surface forming intermixing region (IR) of Cu oxide. In the initial stage of deposition, incident Cu atoms are diffused into CAS bulk and aggregated at the surface which leads to the formation of IR. When the high incident energy, 2 eV, is applied, 20% more Cu atoms are observed at the interface compared to the low incident energy, 0.2 eV, due to enhanced lateral diffusion. As the Cu film grows, the amorphous thin Cu layer of 1 nm is temporarily formed on top of CAS, and crystallization with face-centered cubic from amorphous structure follows regardless of incident energy, and surface roughness is observed to be low for high incident energy cases. Deformation and failure behavior of Cu-CAS bilayer by pulling is investigated by steered molecular dynamics technique. The adhesive failure mode is observed, which implies the bilayer experiences a failure at the interface, and a 7% higher adhesion force is predicted for the high incident energy case. To find an origin of adhesion enhancement, the distribution of Cu atoms on the fractured CAS surface is analyzed, and it turns out that 6.3% more Cu atoms remain on the surface, which can be regarded as a source for the high adhesion force. Our findings hopefully give the insight to understand deposition and failure mechanisms between heterogeneous materials and are also helping to further improve Cu adhesion in sputter experiments.

2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Qiang Zhao ◽  
Yang Li ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

The sputtering of graphite due to the bombardment of hydrogen isotopes is crucial to successfully using graphite in the fusion environment. In this work, we use molecular dynamics to simulate the sputtering using the large-scale atomic/molecular massively parallel simulator (lammps). The calculation results show that the peak values of the sputtering yield are between 25 eV and 50 eV. When the incident energy is greater than the energy corresponding to the peak value, a lower carbon sputtering yield is obtained. The temperature that is most likely to sputter is approximately 800 K for hydrogen, deuterium, and tritium. Below the 800 K, the sputtering yields increase with temperature. By contrast, above the 800 K, the yields decrease with increasing temperature. Under the same temperature and incident energy, the sputtering rate of tritium is greater than that of deuterium, which in turn is greater than that of hydrogen. When the incident energy is 25 eV, the sputtering yield at 300 K increases below an incident angle at 30 deg and remains steady after that.


Author(s):  
Qiang Zhao ◽  
Yang Li ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

The sputtering of graphite due to the bombardment of hydrogen isotopes is one of the critical issues in successfully using graphite in the fusion environment. In this work, we use molecular dynamics method to simulate the sputtering by using the LAMMPS. Calculation results show that the peak values of the sputtering yield are located between 25 eV to 50 eV. After the energy of 25 eV, the higher incident energy cause the lower carbon sputtering yield. The temperature which is most likely to sputter is about 800 K for hydrogen, deuterium and tritium. Before the 800 K, the sputtering rates increase when the temperature increase. After the 800 K, they decrease with the temperature increase. Under the same temperature and energy, the sputtering rate of tritium is bigger than that of deuterium, the sputtering rate of deuterium is bigger than that of hydrogen.


2007 ◽  
Vol 121-123 ◽  
pp. 1053-1056
Author(s):  
Guo Rong Zhong ◽  
Qiu Ming Gao

Molecular dynamics simulation of the solidification behavior of liquid nickel nanowires has been carried out based on the embedded atom potential with different cooling rates. The nanowires constructed with a face-centered cubic structure and a one-dimensional (1D) periodical boundary condition along the wire axis direction. It is found that the final structure of Ni nanowires strongly depend on the cooling rates during solidification from liquid. With decreasing cooling rates the final structure of the nanowires varies from amorphous to crystalline via helical multi-shelled structure.


2010 ◽  
Vol 25 (9) ◽  
pp. 1679-1688 ◽  
Author(s):  
S.Z. Zhao ◽  
J.H. Li ◽  
B.X. Liu

An n-body potential is first constructed for the Zr–Al system and proven to be realistic by reproducing a number of important properties of the system. Applying the constructed potential, molecular dynamics simulations, chemical short-range order (CSRO) calculation, and Honeycutt and Anderson (HA) pair analysis are carried out to study the Zr–Al metallic glasses. It is found that for the binary Zr–Al system, metallic glasses are energetically favored to be formed within composition range of 35–75 at.% Al. The calculation shows that the CSRO parameter is negative and could be up to −0.17, remarkably indicating that there exists a chemical short-range order in the Zr–Al metallic glasses. The HA pair analysis also reveals that there are diverse short-range packing units in the Zr–Al metallic glasses, in which icosahedra and icosahedra/face-centered cubic (fcc)-defect structures are predominant.


2002 ◽  
Vol 721 ◽  
Author(s):  
Peter Klaver ◽  
Barend J. Thijsse

AbstractMolecular Dynamics simulations were performed to study Cu film deposition on β-Ta. Three different β-Ta surfaces were used, two being atomically flat, and one resulting from Ta on Ta growth. We find that the Cu films develop a (111) texture with vertical grain boundaries between grains having different epitaxial relations with the β-Ta substrate. The epitaxial rotation angles were determined, as 5.2° and 10-13°, and the resulting strain reductions in the Cu films were identified. The effects of the substrate differences on the interfacial Ta/Cu intermixing and the epitaxy and grain boundary structure of the films are discussed.


2007 ◽  
Vol 345-346 ◽  
pp. 947-950 ◽  
Author(s):  
Hyon Jee Lee ◽  
Jae Hyeok Shim ◽  
Brian D. Wirth

The interactions of a dislocation with commonly observed irradiation induced defects such as a stacking fault tetrahedron (SFT) and a void are studied using molecular dynamics (MD) simulation methods. The simulation of an SFT interacting with a dislocation in face centered cubic (FCC) copper (Cu) reveals that an SFT is a strong obstacle against a dislocation motion, with dislocation detachment often involving an Orowan like mechanism. The resulting SFT generally involves a shear step, although partial absorption is also observed in some specific interaction geometries. Dislocation interaction with a void has been studied in body centered cubic (BCC) molybdenum (Mo). The dislocation locally annihilates upon contact with the void and then re-nucleates on the void surface as the dislocation glides past the void. The interaction results in the simple shear of the void by one Burger’s vector. The obstacle strength of the void is measured using conjugate gradient molecular statics (MS) method as a function of void size. A large increase in the obstacle strength is observed for a void size greater than 3 nm in diameter.


Sign in / Sign up

Export Citation Format

Share Document