final structure
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Анатолий Александрович Буренин ◽  
Анастасия Валерьевна Ткачева

На примере составного диска, созданного посредством операции горячей посадки, изучается прочность такого соединения на отрыв. Отрывные усилия создаются в качестве центробежных инерционных сил при вращении диска относительное его центральной оси. Показывается, что созданный натяг в сборке имеет выраженную тенденцию к уменьшению. Однако для его обнуления необходимы достаточно значительные угловые скорости вращения. Приведен пример расчета придельной угловой скорости в зависимости от первоначального нагрева охватывающей детали сборки, термомеханических свойств материала сборки и геометрических параметров итоговой конструкции. Подобные расчеты в снижающемся натяге совершенно необходимы, когда эксплуатационные условия требуют принять вращение составного диска в качестве части его функциональных обязанностей. On the example of a composite disk, created by means of a hot-fit operation, the pulloff strength of such a disk is studied. separation forces as centrifugal forces with relative rotation of its central axis. It is shown that the created interference fit in the assembly has a pronounced tendency to decrease. However, for vanishing, sufficiently significant angular velocities of rotation are required. An example of calculating the near-limit angular velocity, depending on the original covered part of the assembly, of the thermomechanical properties of the material and the geometric characteristics of the final structure is given. Such computations in decreasing interference are essential when operating conditions require the rotation of the composite disc to be accepted as part of its functionality.


2021 ◽  
Author(s):  
ANJALI KHARB ◽  
Shilpa Sharma ◽  
Ashish Sharma ◽  
Neeti Nirwal ◽  
Roma Pandey ◽  
...  

Abstract BackgroundPicrorhiza kurroa has been reported as an age-old ayurvedic hepatoprotection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons, uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s.Methods and results In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based ‘shoots-only’ system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qPCR has shortlisted six putative ‘P-II-forming’ ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II., implying that this could be potential AT decorating final structure of P-II. ConclusionOrgan-wise comparative transcriptome mining coupled with reverse transcription real time qPCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nouman Saeed ◽  
Kai Long ◽  
Jamshed Ahmed Ansari ◽  
Nasif Raza Jaffri ◽  
Usama Abrar

This article proposed a methodology that combines two well-known projections and modified density-based optimized techniques in one formulation methodology. This methodology contains an effective explicit geometric entity identified by shape variables that provide easy control in desired particular regions; implicit density-based topological optimization entities utilized topological variables that offer critical design elsewhere. Our main attractive key point of this combined formulation approach is structural assemblies. Structure always manufactures in many patches and joins them by utilizing the structural assemblies such as welding and riveting. It is not easy to execute the structural patches at the required region without acknowledging their dimensions. This proposed approach demonstrates the competence to impose the restrictions related to shape and topological variables of interfaces among the specific patches. Numerous standard numerical examples make sure the validation of the introduced methodology. It remarked that the optimal design could minimize compliance and the minimum number of iterations through numerically performed, concerning computational cost minimized without any kind loss of accuracy of the final structure.


2021 ◽  
Author(s):  
SUONG VAN HOA ◽  
BHARGAVI REDDY ◽  
DANIEL IOSIF ROSCA

This paper presents the procedure to make omega stiffeners using the method of 4D printing of composites. The method allows the manufacturing of complex structures without the need for a complex mold. Instead, flat layers of composite prepregs are laid on a flat mold. Due to the anisotropy of the different layers in the laminates, the stack of prepregs will change from its flat configuration into the omega shape upon curing and cooling to room temperature. The cavity is filled with foam to make the final structure.


Author(s):  
S. S. Tkachenko ◽  
V. O. Yemelyanov ◽  
K. V. Martynov

The article presents experimental data confirming the effect of capillary active substance (surfactants) and sedimentation stability on the final structure of the gel with stabilized silicic acid. Studies of the macrostructure of silica gel depending on the method of emulsifi ation of silicic acid sol and the effect of the resulting fractality on the strength of the mold are presented.The direction of modifying the binder for lost‑wax casting (LWC) with obtaining the specified properties of the ceramic shell is shown.The complex effect of organic polymers on the sol – gel system has been established. The conclusion is made about the possibility of using an aqueous dispersion of acrylic to form a given structure of a silica gel.


2021 ◽  
Vol 1 (2) ◽  
pp. 001-004
Author(s):  
Sánchez-Viesca, Francisco ◽  
Gómez Reina

The use of chlorinated lime for morphine identification has several advantages. The reaction is fast and simple, and the reagent is inexpensive. Besides, the developed red colour comes from the organic compound, not from a reduced inorganic reagent. The last case only indicates oxido-reduction reaction, but it is alien to the final structure of the organic compound under test. In the Wellcome assay the red colour is typical of an o-quinone, the inorganic compounds being colourless. Since the chemistry related to this test has not been described, we provide the route from the alkaloid to the final colourful compound, and also a new preparation of o-quinones from o-halo phenols.


Author(s):  
I.V. Likhachev ◽  
V.S. Bystrov

Studies of the processes of self-organization and self-assembly of various complexly organized (including spiral) structures based on amino acids intensively carried out in recent years. Various methods of molecular modeling, including molecular dynamics (MD) methods, are developed. In this paper, we propose a new approach for a relatively simple technique for conducting MD simulation (MDS) of various molecular nanostructures, determining the trajectory of the MD run and forming the final structure: a molecular dynamic manipulator (MD manipulator). It is an imitation of the operation of an existing or imaginary device or structure by applying force to the existing initial structure in order to obtain a new final structure, having the same chemical composition, but with a different geometry (topology). The PUMA-CUDA software package was applied as the main MD modeling program, which uses the physics of the PUMA software package, developed by the laboratory headed by N.K. Balabaev. Using this MDS tool, you can investigate the formation of helical structures from a linear sequence of any amino acids variation. As an example, the applicability of the developed algorithm for assembling nanotubes from linear phenylalanine (Phe) chains of different chirality (left L-Phe and right D-Phe) is considered by including additional force effects in the molecular dynamics simulation program for these structures. During the MD run, the applied actions, which are the same for the left and right helices of the formed nanotubes, lead the system to an α-helix structure. The work was carried out in an interactive mode using a number of additional programs, incl. trajectory analyzer program MD (TAMD). As a result, the modes that are most adequate for the formation of nanotubes of the right chirality D from the initial L-Phe monomer and nanotubes of the left chirality L from the D-Phe amino acid monomer were determined. The results obtained were compared with data from other works on modeling similar nanotubes of different chirality and experimental data. These are fully in line with the law of change in sign of chirality of molecular structures with complication of their hierarchical level of organization. The molecular animation of the assembly of a left-chiral nanotube from D-monomers is freely available at: http://lmd.impb.ru/Supplementary/PHE.avi.


2021 ◽  
Author(s):  
Mohammad Reza Soheilifar ◽  
Afrooz Rezazadeh

Abstract Today, the cost of treating cancer is very high, so early detection of cancer is essential, and one of the possible ways to diagnose cancer in the early stages is to use sensors that are made in the terahertz area. The proposed structure is a multilayer structure in which graphene is used in the upper and middle layer and the middle layer has a ribbon form. A disk form element is used in the upper layer. Finally, a ring is added to the structure. In the final structure of the ring, it actually inhibits the field, and this will increase the Q-factor at 6.7 THz. The interaction of layers on each other and their effect on reflection is studied to modify the final structure by variation of the chemical potential of the graphene layer in the range of 0.2 to 0.6 eV. Finally, the proposed absorber is used to discriminate cancer and healthy breast tissue. The effect of the thickness and distance of the tissue from the absorber are examined to realize the material effect on sensitivity and figure of merit (FOM) as two main factors for detecting the cancer tissue.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 497
Author(s):  
Zhihao Du ◽  
Guofeng Wang ◽  
Hailun Wang

A front automobile fender with a negative angle was trial produced via rapid superplastic forming (SPF) technology. The tensile test of industrial AA5083 was carried out at elevated temperatures, and the results showed that the maximum elongation was 242% at 480 °C/0.001 s−1. A rigid-plastic constitutive model of the SPF process was established. Initial dies of preforming and final forming were designed. The finite element method (FEM) was used to simulate the forming process and predict the thickness distribution of different areas. Furthermore, the dies were optimized to make the thickness distribution uniform. In the final structure, the maximum thinning ratio decreased from 83.2% to 63% due to the optimized design of the forming dies. The front automobile fender was then successfully fabricated by the preforming process and final forming process at 480 °C. A thickness measurement was carried out, and the minimum thickness of the preforming structure was 2.17 mm at the transverse tank, while that of the final structure was 2.49 mm near the edge of the lamp orifice. The average grain size grew from 20 to 35 μm. The grain growth led to the reduction of mechanical properties. Compared with the mechanical properties of the initial material, the maximum decrease in tensile strength for the material after superplastic forming was 5.78%, and that of elongation was 18.5%.


Author(s):  
Gerardo Urrutia ◽  
Fabio De Colle ◽  
Ariadna Murguia-Berthier ◽  
Enrico Ramirez-Ruiz

Abstract The discovery of GRB 170817A, the first unambiguous off-axis short gamma-ray burst arising from a neutron star merger, has challenged our understanding of the angular structure of relativistic jets. Studies of the jet propagation usually assume that the jet is ejected from the central engine with a top-hat structure and its final structure, which determines the observed light curve and spectra, is primarily regulated by the interaction with the nearby environment. However, jets are expected to be produced with a structure that is more complex than a simple top-hat, as shown by global accretion simulations. We present numerical simulations of short GRBs launched with a wide range of initial structures, durations and luminosities. We follow the jet interaction with the merger remnant wind and compute its final structure at distances ≳ 1011 cm from the central engine. We show that the final jet structure, as well as the resulting afterglow emission, depend strongly on the initial structure of the jet, its luminosity and duration. While the initial structure at the jet is preserved for long-lasting SGRBs, it is strongly modified for jets barely making their way through the wind. This illustrates the importance of combining the results of global simulations with propagation studies in order to better predict the expected afterglow signatures from neutron star mergers. Structured jets provide a reasonable description of the GRB 170817A afterglow emission with an off-axis angle θobs ≈ 22.5○.


Sign in / Sign up

Export Citation Format

Share Document