Molecular Dynamics Simulation of the Solidification of Liquid Nickel Nanowires

2007 ◽  
Vol 121-123 ◽  
pp. 1053-1056
Author(s):  
Guo Rong Zhong ◽  
Qiu Ming Gao

Molecular dynamics simulation of the solidification behavior of liquid nickel nanowires has been carried out based on the embedded atom potential with different cooling rates. The nanowires constructed with a face-centered cubic structure and a one-dimensional (1D) periodical boundary condition along the wire axis direction. It is found that the final structure of Ni nanowires strongly depend on the cooling rates during solidification from liquid. With decreasing cooling rates the final structure of the nanowires varies from amorphous to crystalline via helical multi-shelled structure.

2004 ◽  
Vol 19 (12) ◽  
pp. 3547-3555 ◽  
Author(s):  
J.H. Li ◽  
L.T. Kong ◽  
B.X. Liu

A tight-binding Ni–Hf potential is constructed by fitting some of the ground-state properties, such as the cohesive energy, lattice constants, and the elastic constants of some Ni–Hf alloys. The constructed potential is verified to be realistic by reproducing some static and dynamic properties of the system, such as the melting points and thermal expansion coefficients for the pure Ni and Hf as well as some of the equilibrium compounds, through molecular dynamics simulation. Applying the constructed potential, molecular dynamics simulations are performed to compare the relative stability of the face-centered-cubic (fcc)/hexagonal close-packed (hcp) solid solutions to their disordered counterparts as a function of solute concentration. It is found that the solid solutions become unstable and transform into the disordered states spontaneously, when the solute concentrations exceed the two critical solid solubilities, i.e., 25 at.% Ni for hcp Hf-rich solid solution and 18 at.% Hf for fcc Ni-based solid solution, respectively. This allows us to determine that the glass-forming ability/range of the Ni–Hf system is within 25–82 at.% Ni. Interestingly, simulations also reveal for the first time, that two mixed regions exist in which an amorphous phase coexists with a crystalline phase, and at about 18 at.% Ni, the hcp lattice turns into a new metastable phase identified to be face-centered orthorhombic structure.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 666
Author(s):  
Dmitry Lychagin ◽  
Andrey Dmitriev ◽  
Anton Nikonov ◽  
Ekaterina Alfyorova

An approach to the study of the mechanisms of shear deformation in the bulk of face centered cubic (FCC) single crystals based on molecular dynamics simulation is proposed. Similar shear patterns obtained experimentally, and in simulations, allow consideration of the effect of crystallographic and geometric factors on deformation mechanisms. Deformation of <001> single-crystal samples in the form of tetragonal prisms with {110} and {100} lateral faces and different height-to-width ratios was studied. The simulation showed that the sample vertices are the preferential sites for shear initiation. It was found that the formation of deformation domains and interaction of shear planes are caused by the geometry of shear planes in the bulk of the single crystal, i.e., by their location in relation to basic stress concentrators and by their orientations relative to the lateral faces. The deformation patterns obtained in the simulations were in good agreement with those observed in the experiments. The fractions of sliding dislocations and dislocation barriers were determined for different materials, taking into account the crystallographic and geometric factors.


2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


1998 ◽  
Vol 539 ◽  
Author(s):  
J. Belak ◽  
R. Minich

AbstractThe dynamic fracture (spallation) of ductile metals is known to initiate through the nucleation and growth of microscopic voids. Here, we apply atomistic molecular dynamics modeling to the early growth of nanoscale (2nm radius) voids in face centered cubic metals using embedded atom potential models. The voids grow through anisotropic dislocation nucleation and emission into a cuboidal shape in agreement with experiment. The mechanism of this nucleation process is presented. The resulting viscous growth exponent at late times is about three times larger than expected from experiment for microscale voids, suggesting either a length scale dependence or a inadequacy of the molecular dynamics model such as the perfect crystal surrounding the void.


2011 ◽  
Vol 694 ◽  
pp. 908-913 ◽  
Author(s):  
S.N Xu ◽  
N. He ◽  
L. Zhang

Relaxation and local structure changes of a molten Cu135 cluster have been studied by molecular dynamics simulation using embedded atom method when the cluster is rapidly quenched to 700K, 600K, 500K, 400K, 300K, 200K, and 100K. With decreasing quenching temperature, details of energy evolvement and relaxation are analyzed. The simulation results show that the final structures are molten at 700K, like-icosahedral geometry at 600K-200K, non-crystal at 100K. The average energy of atoms is the lowest at 500K, and in the relaxation has abrupt increase at 25,135 and 42ps separately at 400K, 300K, and 200K. The simulation reveals that the quenching temperature has great affect on the relaxation processes of the Cu135 cluster after β relaxation region.


2020 ◽  
Vol 65 (6) ◽  
pp. 54-60
Author(s):  
Thao Nguyen Thi ◽  
Hang Trinh Thi Thu

The structure and mechanical properties of Cu80Ni20 and Cu50Ni50 alloys with the size of 4000 atoms have been investigated using molecular dynamic (MD) simulation. The interactions between atoms of the system were calculated by the Sutton-Chen type of embedded atom method. Using a cooling rate of 0.01 K\ps, we find that both Ni and Cu atoms are crystallized into face centered cubic (fcc) and the hexagonal close packed (hcp) phases when the sample was cooled down to 300 K. The atomic concentration of CuNi alloy samples have a different effect on this crystallization. The transformation to the crystalline phase is analyzed through the Common Neighbor Analysis (CNA) methods. Furthermore, we focus on the dependence of the mechanical properties of CuNi alloy on pressure and atomic concentration


Sign in / Sign up

Export Citation Format

Share Document