scholarly journals Ultra-Fine Centrifugal Concentration of Bastnaesite Ore

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1501
Author(s):  
Alex Norgren ◽  
Corby Anderson

Historically, the ability to effectively separate carbonate gangue from bastnaesite via flotation has frequently proven to be challenging without sacrificing significant rare earth oxide (REO) grade or recovery. However, in light of the fact that the rare earth bearing minerals often exhibit higher specific gravities than the carbonate gangue, the possibility exists that the use of gravity separation could be used to achieve such a selective separation. This however is complicated by the fact that, in cases such as this study when the liberation size is finer than 50 µm, most traditional gravity separation methods become increasingly challenging. The purposes of this study is to determine the applicability of gravity concentrators to beneficiate bastnaesite from deleterious calcite bearing flotation feed material. Via the use of a UF Falcon, it was possible to achieve rougher gravity REO recoveries approaching the upper 80% range while rejecting on the order of 30% of the total calcium. In terms of purely REO recovery, this represents a significant improvement over results obtained via a traditional Falcon in previously reported studies.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1498
Author(s):  
Alex Norgren ◽  
Corby Anderson

Historically, the ability to effectively separate carbonate gangue from bastnaesite via flotation has frequently proven to be challenging without sacrificing significant rare earth oxide (REO) grade or recovery. However, in light of the fact that the rare earth bearing minerals often exhibit higher specific gravities than the carbonate gangue, the possibility exists that the use of gravity separation could be used to achieve such a selective separation. This however is complicated by the fact that, in cases such as this study when the liberation size is finer than 50 microns, most traditional gravity separation methods become increasingly challenging. The aim of this study is to determine the applicability of centrifugal concentrators to beneficiate ultra-fine (UF) bastnaesite and calcite bearing flotation concentrates. By using a UF Falcon, it was possible to achieve initial gravity REO recoveries exceeding 90% while rejecting on the order of 25% to 35% of the total calcium from an assortment of rougher and cleaner flotation concentrates. Additionally, when additional stages of cleaner UF Falcon gravity separation were operated in an open circuit configuration, it was possible, from an original fine feed of 35 microns containing 50.5% REO and 5.5% Ca, to upgrade up to approximately 59% REO and 2.0% calcium. While not the goal of this study, these results also support previous limited data to suggest that UF Falcons are potentially capable of treating a wider range of materials than they were originally designed for, including feeds rich in heavy mineral content.



1988 ◽  
Vol 121 ◽  
Author(s):  
B. S. Chiou ◽  
M. Y. Lee ◽  
J. G. Duh

ABSTRACTSynthesized zirconia ceramics are prepared through the coprecipita-tion process. Application of the wet chemical approach is aimed at the achievement of highly sintered ceramics at lower temperature. The thermal evolution of the synthesized CeO2-ZrO2 powder is investigated with the aid of DTA and TGA measurement. The exothermic peaks on the DTA thermogram are futher identified by the IR analysis. The effect of CeO on the occurrence of the peaks is probed. For other rare-earth oxiae doped ceramics, such as Nd2O3. and Dy2O3. containing zirconia, the bulk and grain boundary resistances are evaluated by the impedance spectroscopy. The dependence of the associated activation energy in the rare-earth oxide doped zirconia is discussed with respect to the variation of the ionic radius of the rare earth constituent.



2013 ◽  
Vol 209 ◽  
pp. 212-215
Author(s):  
A.K. Patel ◽  
A.R. Umatt ◽  
B.S. Chakrabarty

It is well known that a minor addition of rare earth oxides can provide a beneficial effect towards various catalytic reactions. Use of rare earth oxide in different applications could improve commercial productivity in an affordable way. Among the rare earth oxides, ZrO2, La2O3 and CeO2 are very interesting due to their various characteristics showing a large range of applications in organic reactions. The changes in the molecular properties of materials at the nano scale level greatly enhance their physical properties as well as chemical properties and activity. Due to the extremely small size of the particles, an increased surface area is provided to the reactant enabling more molecules to react at the same time, thereby speeding up the process. In this work, the enhancement in the catalytic activity of these nano structured rare earth oxides has been studied under different reaction conditions. Nano crystalline ZrO2, La2O3 and CeO2 samples were synthesized using precipitation method and optimum reaction conditions have been established; whereas the corresponding bulk samples were synthesized by combustion method. The identification of phase and crystalline size of synthesized oxides have been done by X-ray diffraction, the band gape of these three oxides in both the forms has been analyzed by UV absorbance and surface area has been determined by gas adsorption analysis (BET). Moreover their different properties and the activity of nano crystallite oxides have also been compared with their bulk counterparts. Even the activity of ZrO2 is also compared with the rare earth oxides La2O3 and CeO2.



1979 ◽  
Vol 93 (1) ◽  
pp. K63-K66 ◽  
Author(s):  
B. Chevalier ◽  
G. Demazeau ◽  
J. Etourneau ◽  
P. Hagenmuller


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhenglei Yu ◽  
Lunxiang Li ◽  
Deqiang Zhang ◽  
Guangfeng Shi ◽  
Guang Yang ◽  
...  

AbstractNickel-based alloy coatings were widely used for the remanufacturing of dies and moulds by laser cladding, but the crack sensitivity would be increase due to the higher strength and hardness, which reduced the wear resistance of Ni-based alloys. In this paper, Ni-based coatings with the addition of a plastic phase (an austenitic stainless net) were prepared using laser cladding technology, and the CeO2 was added in cladding layers. The cracking mechanism, microhardness, microstructure, phase composition, and wear properties were investigated. The relationship between thermal stress and the elastic and plastic fracture had been developed from the standpoint of fracture mechanics and thermal elastic fracture mechanics. The fracture criterion of the nickel-based coating was obtained, and the study has shown that the crack sensitivity could be reduced by decreasing the thermal expansion coefficient Δα. Thus, a new method was proposed, which the stainless steel nets were prefabricated on the substrate. It was found that the number of cracks reduced significantly with the addition of stainless steel net. When the stainless steel net with 14 mesh was added in Ni-based coatings, the average microhardness of nickel composite coating was 565 HV0.2, which was 2.6 times higher than that of the 45 steel substrate. Although the rare earth oxide 4 wt.% CeO2 and stainless steel net were added in the Ni-based coating reducing the microhardness (the average microhardness is 425 HV0.2), the wear resistance of it improved substantially. The wear volume of Ni-based composite coating was 0.56×10−5 mm3·N−1·m−1, which was 85.1% lower than that of 45 steel. The experiment results have shown that the Nickel-based composite coating is equipped with low crack sensitivity and high abrasive resistance with austenitic stainless net and the rare earth oxide 4 wt.% CeO2. This research offers an efficient solution to produce components with low crack susceptibility and high wear-resistance coatings fabricated by laser cladding.



2006 ◽  
Vol 408-412 ◽  
pp. 480-483 ◽  
Author(s):  
Takao Esaka ◽  
Kouichi Motoike


Sign in / Sign up

Export Citation Format

Share Document