scholarly journals Modeling of Forming Limit Bands for Strain-Based Failure-Analysis of Ultra-High-Strength Steels

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 631 ◽  
Author(s):  
Hamid Bayat ◽  
Sayantan Sarkar ◽  
Bharath Anantharamaiah ◽  
Francesco Italiano ◽  
Aleksandar Bach ◽  
...  

Increased passenger safety and emission control are two of the main driving forces in the automotive industry for the development of light weight constructions. For increased strength to weight ratio, ultra-high-strength steels (UHSSs) are used in car body structures. Prediction of failure in such sheet metals is of high significance in the simulation of car crashes to avoid additional costs and fatalities. However, a disadvantage of this class of metals is a pronounced scatter in their material properties due to e.g., the manufacturing processes. In this work, a robust numerical model is developed in order to take the scatter into account in the prediction of the failure in manganese boron steel (22MnB5). To this end, the underlying material properties which determine the shapes of forming limit curves (FLCs) are obtained from experiments. A modified Marciniak–Kuczynski model is applied to determine the failure limits. By using a statistical approach, the material scatter is quantified in terms of two limiting hardening relations. Finally, the numerical solution obtained from simulations is verified experimentally. By generation of the so called forming limit bands (FLBs), the dispersion of limit strains is captured within the bounds of forming limits instead of a single FLC. In this way, the FLBs separate the whole region into safe, necking and failed zones.

2019 ◽  
Vol 25 (2) ◽  
pp. 101 ◽  
Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Štěpán Jeníček ◽  
Jiří Vrtáček ◽  
Ludmila Kučerová ◽  
...  

<p class="AMSmaintext">Development of high strength or even ultra-high strength steels is mainly driven by the automotive industry which strives to reduce the weight of individual parts, fuel consumption, and CO<sub>2</sub> emissions. Another important factor is to improve passenger safety. In order to achieve the required mechanical properties, it is necessary to use suitable heat treatment in addition to an appropriate alloying strategy. The main problem of these types of treatments is the isothermal holding step. For TRIP steels, the holding temperature lies in the field of bainitic transformation. These isothermal holds are economically demanding to perform in industrial conditions. Therefore new treatments without isothermal holds, which are possible to integrate directly into the production process, are searched. One way to produce high-strength sheet is the press-hardening technology. Physical simulation based on data from a real-world press-hardening process was tested on CMnSi TRIP steel. Mixed martensitic-bainitic structures with ferrite and retained austenite (RA) were obtained, having tensile strengths in excess of 1000 MPa.</p>


2018 ◽  
Author(s):  
Hamid Reza Bayat ◽  
Sayantan Sarkar ◽  
Francesco Italiano ◽  
Aleksandar Bach ◽  
Stephan Wulfinghoff ◽  
...  

Author(s):  
R. G. Thiessen

The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector, including the automotive sector, to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths, certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970), but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this, newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE. This article is part of the themed issue ‘The challenges of hydrogen and metals’.


2018 ◽  
Vol 941 ◽  
pp. 317-322 ◽  
Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Josef Káňa ◽  
Dagmar Bublíková ◽  
Martin Bystrianský

Development of high strength or even ultra-high strength steels is mainly driven by the automotive industry which strives to reduce the weight of individual parts, fuel consumption, and CO2 emissions. Another important factor is the passenger safety which will improve by the use of these materials. In order to achieve the required mechanical properties, it is necessary to use suitable heat treatment in addition to an appropriate alloying strategy. The main problem of these treatments is the isothermal holding time. These holding times are technologically demanding which is why industry seeks new possibilities to integrate new processing methods directly into the production process. One option for making high-strength sheet metals is press-hardening which delivers high dimensional accuracy and a small spring-back effect. In order to test the use of AHSS steels for this technology, a material-technological modelling was chosen. Material-technological models based on data obtained directly from a real press-hardening process were examined on two experimental steels, CMnSi TRIP and 42SiCr. Variants with isothermal holding and continuous cooling profiles were tested. It was found that by integrating the Q&P process (quenching and partitioning) into press hardening, the 42SiCr steel can develop strengths of over 1800 MPa with a total elongation of about 10%. The CMnSi TRIP steel with lower carbon content and without chromium achieved a tensile strength of 1160 MPa with a total elongation of 10%.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document