scholarly journals Friction Stir Spot Welding-Brazing of Al and Hot-Dip Aluminized Ti Alloy with Zn Interlayer

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 922 ◽  
Author(s):  
Xingwen Zhou ◽  
Yuhua Chen ◽  
Shuhan Li ◽  
Yongde Huang ◽  
Kun Hao ◽  
...  

Friction stir spot welding (FSSW) of Al to Ti alloys has broad applications in the aerospace and automobile industries, while its narrow joining area limits the improvement of mechanical properties of the joint. In the current study, an Al-coating was prepared on Ti6Al4V alloy by hot-dipping prior to joining, then a Zn interlayer was used during friction stir joining of as-coated Ti alloy to the 2014-Al alloy in a lap configuration to introduce a brazing zone out of the stir zone to increase the joining area. The microstructure of the joint was investigated, and the joint strength was compared with the traditional FSSW joint to confirm the advantages of this new process. Because of the increase of the joining area, the maximum fracture load of such joint is 110% higher than that of the traditional FSSW joint under the same welding parameters. The fracture load of these joints depends on the joining width, including the width of solid-state bonding region in stir zone and brazing region out of stir zone.

2009 ◽  
Vol 23 (6) ◽  
pp. 403-410 ◽  
Author(s):  
Mitsuo Fujimoto ◽  
Shinji Koga ◽  
Natsumi Abe ◽  
Yutaka S. Sato ◽  
Hiroyuki Kokawa

2007 ◽  
Vol 25 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Mitsuo FUJIMOTO ◽  
Shinji KOGA ◽  
Natsumi ABE ◽  
Yutaka SATO S. ◽  
Hiroyuki KOKAWA

2017 ◽  
Vol 7 (3) ◽  
pp. 1629-1632 ◽  
Author(s):  
M. A. Tashkandi ◽  
J. A. Al-jarrah ◽  
M. Ibrahim

This study was focused on the effect of welding parameters on the lap-shear fracture load of the welded joints prepared by friction stir spot welding. Four different weld parameters were analyzed: rotational speed, dwell time, pin length and shoulder size of the welding tool. It was found that the lap-shear fracture load increases with an increase of the welding parameters to a limited value and decreases with further increase. The strong welded joints failed under nugget-pull out fracture.


2014 ◽  
Vol 1016 ◽  
pp. 161-166 ◽  
Author(s):  
Y. Bozkurt ◽  
Mustafa Kemal Bilici

The feasibility of friction stir spot welding was studied on AA5754-H22 and AA2024-T3 aluminum alloys which have widespread applications in aircraft and automotive industries. The quality of the joint was evaluated by examining the characteristics of the joint as a result of lap-shear fracture load. Taguchi approach of the parameter design was used as a statistical design of experiment technique to set the optimal welding parameters. The experiments were arranged by using Taguchi’s L9 orthogonal array. The signal-to-noise ratio and the analysis of variance were utilized to obtain the influence of the friction stir spot welding parameters on the lap-shear fracture load. Finally, the results were confirmed by further experiments.


2014 ◽  
Vol 493 ◽  
pp. 739-742 ◽  
Author(s):  
Ario Sunar Baskoro ◽  
Suwarsono ◽  
Gandjar Kiswanto ◽  
Winarto

Technology of Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on Aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and less distortion. The purpose of this study is to analyze the parameters effect of high speed tool rotation onmicro Friction Stir Spot Welding(μFSSW) to theshear strengthof welds. In this case, Aluminum material A1100, with thickness of 0.4 mm was used. Tool material of HSS material was shaped with micro grinding process. The spindle speed was fixed at 30000 rpm. Tool shoulder diameter was 3 mm, and a length of pin was 0.7 mm. The parameter variations used in this study were the variable of pin diameter (1.5 mm, 2.0 mm, and 2.5 mm), a variable ofplunge speed(2 mm/min, 4 mm/min, 6 mm/min), and the variable ofdwell time(2 seconds, 4 seconds, 6 seconds). Where the variation of these parameters will affect to the mechanical properties of welds (as response) was theshear strength.Response Surface Methods(RSM) was used to analyze μFSSW parameters with theshear strengthof welds. From the result of experiment and analysis, it is shown that the important welding parameters in high speed μFSSW process are pin diameter and plunge speed.


2016 ◽  
Vol 860 ◽  
pp. 49-52 ◽  
Author(s):  
Munir Tasdemir ◽  
Mustafa Kemal Bilici ◽  
Mehmet Kurt

In the present study, we attempt to use powder of glass spheres filler and reinforce material in HDPE to produce composite structure and then evaluate its mechanical properties to study the effect of welding parameters and filler content on mechanical properties of HDPE. The effect of welding parameters (tool rotational speed, the plunge depth and the dwell time) on friction stir spot welding properties of high density polyethylene/glass spheres (hollow) polymer composites sheets was studied.


2020 ◽  
Vol 835 ◽  
pp. 274-287
Author(s):  
Mahmoud Hussin Fahmy ◽  
Hamed A. Abdel-Aleem ◽  
Nahid Ahmed Abdel-Elraheem ◽  
M.R. El-Kousy

The quality of welded joints of FSSW is mainly dependent on the processing parameters while the main disadvantage of this process is the creation of an exit hole. Process parameters, namely tool dimensions, tool rotational speed, and stir time were changed and their impact on bond dimensions and weld strength was investigated using 2024-T3 Al Alloy. Macro- and microstructures of the welded samples were examined; shear fracture loads were measured and the optimum set of operation variables was determined. To decrease the exit hole of the first stage the present paper proposes a modified two-stage weld-refill process employing the same welding machine. In this work, this two-stage process was referred to as reversed friction stir spot welding (ReFSSW). In the second stage, a smaller pin was used and the shoulder diameter was designed such that to force the metal of the upper plate to flow towards the exit hole of the first stage decreasing its dimensions. The metal flow in the second stage was evaluated by examining the microstructure of the metal that filled the exit hole of the first stage. Thin stir zone was found around the pin of the second stage followed by thermomechanically affected zone consisting of grains elongated in the vertical direction. The proposed process resulted in smaller exit hole dimensions and consequently higher mechanical properties compared with the conventional single-stage FSSW.


Sign in / Sign up

Export Citation Format

Share Document