scholarly journals Comparative Study of Jet Slurry Erosion of Martensitic Stainless Steel with Tungsten Carbide HVOF Coating

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 600 ◽  
Author(s):  
Galileo Santacruz ◽  
Antonio Shigueaki Takimi ◽  
Felipe Vannucchi de Camargo ◽  
Carlos Pérez Bergmann ◽  
Cristiano Fragassa

This work evaluates the behavior of a martensitic stainless steel (AISI 410) thermally treated by quenching and tempering with a tungsten carbide (86WC-10Co-4Cr) coating obtained by high-velocity oxygen fuel (HVOF) thermal spray deposition, analyzing the volume loss under erosive attacks at 30 ∘ and 90 ∘ incidence angles by using jet slurry erosion equipment with electrofused alumina erodent particles. Firstly, the characterization of the samples was carried out in terms of the microstructure (SEM), thickness, roughness, porosity, and microhardness. Then, samples were structurally characterized in the identification of the phases (XRD and EDS) present in the coating, as well as the particle size distribution (LG) and morphology of the erodent. It was determined that the tungsten carbide coating presented better resistance to jet slurry erosion wear when compared to the martensitic stainless steel analyzed, which is approximately two times higher for the 30 ∘ angle. The more ductile and brittle natures of the substrate and the coating, respectively, were evidenced by their higher volumetric erosion at 30 ∘ for the first and 90 ∘ for the latter, as well as their particular material removal mechanisms. The enhanced resistance of the coating is mainly attributed to its low porosity and high WC-Co content, resulting in elevated mechanical resistance.

Author(s):  
Carlos R. da Cunha ◽  
Telmo R. Strohaecker

In some offshore structures, pipes with good mechanical resistance and internal surfaces that have also good corrosion resistance are necessary. To associate these properties, one possibility is to make a cladding process in the pipe. To evaluate this kind of composite, a pipe (API X65) was clad with stainless steel (ASTM 308L) by GMAW process and sectioned in several specimens for different analyses. The work starts qualifying the quality of the composite with bending tests. The load that was recorded in this test was the guide to three-point-fatigue tests that gave us the possibility to plot an S-N curve. The tension was the most tensioned point in the specimen. To verify the metallographic conditions of both materials and the interface, metallographic analyses with a transversal cut in the specimens and hardness test across the composite were accomplished. The fatigue tested specimens were submitted to fracture analyses to know how the failure occurs. These analyses contain photos of the specimen’s fracture - showing the origin of the failure, a metallographic of the specimen’s interface to check undesired microstructures that could cause a failure and micrographs of the most tensioned point of the specimen to check the initial failure mechanism. The results in the following work show a good way of cladding process.


Author(s):  
Abderrahmen Zerti ◽  
Mohamed Athmane Yallese ◽  
Oussama Zerti ◽  
Mourad Nouioua ◽  
Riad Khettabi

The purpose of this experimental work is to study the impact of the machining parameters ( Vc, ap, and f) on the surface roughness criteria ( Ra, Rz, and Rt) as well as on the cutting force components ( Fx, Fy, and Fz), during dry turning of martensitic stainless steel (AISI 420) treated at 59 hardness Rockwell cone. The machining tests were carried out using the coated mixed ceramic cutting-insert (CC6050) according to the Taguchi design (L25). Analysis of the variance (ANOVA) as well as Pareto graphs made it possible to quantify the contributions of ( Vc, ap, and f) on the output parameters. The response surface methodology and the artificial neural networks approach were used for output modeling. Finally, the optimization of the machining parameters was performed using desirability function (DF) minimizing the surface roughness and the cutting forces simultaneously. The results indicated that the roughness is strongly affected by the feed rate ( f) with contributions of (80.71%, 80.26%, and 81.80%) for ( Ra, Rz, and Rt) respectively, and that the depth of cut ( ap) is the factor having the major influence on the cutting forces ( Fx = 53.76%, Fy = 50.79%, and Fz = 65.31%). Furthermore, artificial neural network and response surface methodology models correlate very well with experimental data. However, artificial neural network models show better accuracy. The optimum machining setting for multi-objective optimization is Vc = 80 m/min, f = 0.08 mm/rev and ap = 0.141 mm.


2013 ◽  
Vol 845 ◽  
pp. 765-769 ◽  
Author(s):  
Guilherme Cortelini Rosa ◽  
André J. Souza ◽  
Flávio J. Lorini

Machining performance consists to associate the optimal process and cutting parameters and maximum material removal rate with the most appropriate tool while controlling the machined surface state. This work verifies the influence of standard and wiper cutting tools on generated surface roughness and residual stress in dry finish turning operation of the martensitic stainless steel AISI 420 in a comparative way. Tests are conducted for different combinations of tool nose geometry, feed rate and depth of cut being analyzed through the Design of Experiments regarding to surface roughness parametersRaandRt. Moreover, the formation of residual stresses in the material (using the technique of X-Ray Diffraction) was evaluated after the machining process for these two cutting geometries and thereafter the result was compared between them. An ANOVA is performed to clarify the influence of cutting parameters on generated surface roughness, which outputs inform that cutting tool geometry is the most influent onRaandRt. It is concluded that analyzed wiper inserts present low performance for low feed rates. Regarding the analysis of the residual stresses it can be stated that for standard and wiper tools the values collected show that for finish turning the compression stresses were found. It can be observed that the greatest amount of compressive stress has been found for the standard tool.


2012 ◽  
Vol 710 ◽  
pp. 500-505 ◽  
Author(s):  
Hassan Jayaraj Amarendra ◽  
Pradeep Kalhan ◽  
Gajanan Prabhakar Chaudhari ◽  
Sameer Kumar Nath ◽  
Shravan Kumar

In the present work, effect of various heat treatments on slurry erosion behavior of 13Cr-4Ni martensitic stainless steel (MSS) at different impingement angles has been studied. The as-received cast bars of MSS were given various heat treatments. These heat treatments involved the austenitization of cast steel at temperatures of 950° C, 1000° C and 1050° C for different soaking durations of 2, 4 and 6 h at each temperature. This was followed by oil quenching then tempering for 1 h at a 600° C air cooled. Heat treated MSS samples were characterized for microstructure and mechanical properties viz. hardness, ductility (% elongation), tensile strength (UTS), and toughness. For wear characterization, slurry erosion tests were conducted at different impingement angles for as-received cast and heat treated samples. The heat treated MSS shows approximately 34% lesser weight loss as compared to as-received cast MSS. Increase in toughness of heat treated samples is found to be responsible for the improved slurry erosion resistance. Impingement angle close to 0° showed least wear loss.


Sign in / Sign up

Export Citation Format

Share Document