scholarly journals Validation of a New Quality Assessment Procedure for Ductile Irons Production Based on Strain Hardening Analysis

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 837 ◽  
Author(s):  
Angella ◽  
Zanardi

A mathematical procedure based on the analysis of tensile flow curves has been proposed to assess the microstructure quality of several ductile irons (DIs). The procedure consists of a first diagram for the assessment of the ideal microstructure of DIs, that is, the matrix where mobile dislocations move, and a second diagram for the assessment of the casting integrity because of potential metallurgical discontinuities and defects in DIs. Both diagrams are based on the dislocation-density-related constitutive Voce equation that is used for modeling the tensile plastic behavior of DIs. The procedure stands on the fundamental assumption that the strain hardening behavior of DIs is not affected by the nature and the density of the potential metallurgical discontinuities and defects, which are expected to affect only the elongations to fracture. However, this fundamental assumption is not obvious, and so its validity was evaluated through tensile testing Isothermed Ductile Irons (IDIs) 800, showing a wide scatter of elongations to rupture. The analysis of the strain hardening behaviors supported by strain energy density calculations of IDIs tensile tests proved that the fundamental assumption was valid and the quality assessment procedure could be applied to IDIs. A modified Voce equation was also introduced to improve the fitting of the experimental tensile flow curves and the strain energy density calculations.

2017 ◽  
Vol 11 (1) ◽  
pp. 85-110 ◽  
Author(s):  
Haralambia P. Charalambous ◽  
Panayiotis C. Roussis ◽  
Antonios E. Giannakopoulos

Background:When subjected to time-dependent blood pressure, human arteries undergo large deformations, exhibiting mainly nonlinear hyperelastic type of response. The mechanical response of arteries depends on the health of tissues that comprise the artery walls. Typically, healthy arteries exhibit convex strain hardening under tensile loads, atherosclerotic parts exhibit stiffer response, and aneurysmatic parts exhibit softening response. In reality, arterial dynamics is the dynamics of a propagating pulse, originating in heart ventricle, propagating along aorta, bifurcating,etc. Artery as a whole cannot be simulated as a lump ring, however its cross section can be simulated as a vibrating ring having a phase lag with respect to the other sections, creating a running pressure wave. A full mathematical model would require fluid-solid interaction modeling continuity of blood flow in a compliant vessel and a momentum equation. On the other hand, laboratory testing often uses small-length arteries, the response of which is covered by the present work. In this way, material properties that change along the artery length can be investigated.Objective:The effect of strain hardening on the local dynamic response of human arteries (excluding the full fluid-structure interaction) is examined through appropriate hyperelastic models related to the health condition of the blood vessel. Furthermore, this work aims at constituting a basis for further investigation of the dynamic response of arteries accounting for viscosity.Method:The governing equation of motion is formulated for three different hyperelastic material behaviors, based on the constitutive law proposed by Skalaket al., Hariton, and Mooney-Rivlin, associated with the hardening behavior of healthy, atherosclerotic, and aneurysmatic arteries, respectively. The differences between these modelling implementations are caused by physiology, since aneurysmatic arteries are softer and often sclerotic arteries are stiffer than healthy arteries. The response is investigated by proper normalization of the involved material parameters of the arterial walls, geometry of the arteries, load histories, time effects, and pre-stressing. The effect of each problem parameter on the arterial response has been studied. The peak response of the artery segment is calculated in terms of radial displacements, principal elongations, principal stresses, and strain-energy density. The validity of the proposed analytical models is demonstrated through comparison with previous studies that investigate the dynamic response of arterial models.Results:Important metrics that can be useful to vascular surgery are the radial deformation and the maximum strain-energy density along with the radial resonance frequencies. These metrics are found to be influenced heavily by the nonlinear strain-hardening characteristics of the model and the longitudinal pre-stressing.Conclusion:The proposed formulation permits a systematic and generalizable investigation, which, together with the low computational cost of analysis, makes it a valuable tool for calculating the response of healthy, atherosclerotic, and aneurysmatic arteries. The radial resonance frequencies can explain certain murmures developed in stenotic arteries.


2020 ◽  
Vol 28 ◽  
pp. 734-742
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Liviu Marsavina ◽  
Filippo Berto

2021 ◽  
Vol 230 ◽  
pp. 111716
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Majid Reza Ayatollahi ◽  
Liviu Marsavina ◽  
Filippo Berto

Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


2014 ◽  
Vol 1679 ◽  
Author(s):  
O.G. Súchil ◽  
G. Abadal ◽  
F. Torres

ABSTRACTSelf-powered microsystems as an alternative to standard systems powered by electrochemical batteries are taking a growing interest. In this work, we propose a different method to store the energy harvested from the ambient which is performed in the mechanical domain. Our mechanical storage concept is based on a spring which is loaded by the force associated to the energy source to be harvested [1]. The approach is based on pressing an array of fine wires (fws) grown vertically on a substrate surface. For the fine wires based battery, we have chosen ZnO fine wires due the fact that they could be grown using a simple and cheap process named hydrothermal method [2]. We have reported previous experiments changing temperature and initial pH of the solution in order to determine the best growth [3]. From new experiments done varying the compounds concentration the best results of fine wires were obtained. To characterize these fine wires we have considered that the maximum load we can apply to the system is limited by the linear buckling of the fine wires. From the best results we obtained a critical strain of εc = 3.72 % and a strain energy density of U = 11.26 MJ/m3, for a pinned-fixed configuration [4].


2010 ◽  
Vol 452-453 ◽  
pp. 441-444 ◽  
Author(s):  
Tomáš Profant ◽  
Jan Klusák ◽  
Michal Kotoul

The bi-material notch composed of two orthotropic parts is considered. The radial and tangential stresses and strain energy density is expressed using the Stroh-Eshelby-Lekhnitskii formalism for the plane elasticity. The potential direction of the crack initiation is determined from the maximum mean value of the tangential stresses and local minimum of the mean value of the generalized strain energy density factor in both materials. Matched asymptotic procedure is used to derive the change of potential energy for the debonding crack and the crack initiated in the determined direction.


Author(s):  
Sergio Cicero ◽  
Francisco Ibáñez ◽  
Isabela Procopio ◽  
Virginia Madrazo

This paper presents the application of the Strain Energy Density (SED) criterion to the estimation of fracture loads on structural steel S355J2 operating at lower shelf temperatures (−196°C) and containing U-shaped notches. 24 fracture tests were performed on this material, combining 6 different notch radii: 0 mm (crack-like defect), 0.15 mm, 0.25 mm, 0.50 mm, 1.0 mm and 2.0 mm. The results obtained in cracked specimens (0 mm notch radius) were used to determine the material fracture toughness, which is an input parameter in the SED criterion, whereas the notched specimens were used to demonstrate the capacity and the limitations of the SED criterion to provide fracture load estimations in the analyzed conditions.


Sign in / Sign up

Export Citation Format

Share Document