scholarly journals Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniques

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 874 ◽  
Author(s):  
Ramin Rahmani ◽  
Merilin Rosenberg ◽  
Angela Ivask ◽  
Lauri Kollo

In present work, the combination of spark plasma sintering (SPS) and selective laser melting (SLM) techniques was introduced to produce composite materials where silver-doped titania (TiO2) ceramics were reinforced with ordered lattice structures of titanium alloy Ti6Al4V. The objective was to create bulk materials with an ordered hierarchical design that were expected to exhibit improved mechanical properties along with an antibacterial effect. The prepared composite materials were evaluated for structural integrity and mechanical properties as well as for antibacterial activity towards Escherichia coli. The developed titanium–silver/titania hybrids showed increased damage tolerance and ultimate strength when compared to ceramics without metal reinforcement. However, compared with titania/silver ceramics alone that exhibited significant antibacterial effect, titanium-reinforced ceramics showed significantly reduced antibacterial effect. Thus, to obtain antibacterial materials with increased strength, the composition of metal should either be modified, or covered with antibacterial ceramics. Our results indicated that the used method is a feasible route for adding ceramic reinforcement to 3D printed metal alloys.

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1546 ◽  
Author(s):  
Kyungju Kim ◽  
Dasom Kim ◽  
Kwangjae Park ◽  
Myunghoon Cho ◽  
Seungchan Cho ◽  
...  

Aluminium–copper composite materials were successfully fabricated using spark plasma sintering with Al and Cu powders as the raw materials. Al–Cu composite powders were fabricated through a ball milling process, and the effect of the Cu content was investigated. Composite materials composed of Al–20Cu, Al–50Cu, and Al–80Cu (vol.%) were sintered by a spark plasma sintering process, which was carried out at 520 °C and 50 MPa for 5 min. The phase analysis of the composite materials by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) indicated that intermetallic compounds (IC) such as CuAl2 and Cu9Al4 were formed through reactions between Cu and Al during the spark plasma sintering process. The mechanical properties of the composites were analysed using a Vickers hardness tester. The Al–50Cu composite had a hardness of approximately 151 HV, which is higher than that of the other composites. The thermal conductivity of the composite materials was measured by laser flash analysis, and the highest value was obtained for the Al–80Cu composite material. This suggests that the Cu content affects physical properties of the Al–Cu composite material as well as the amount of intermetallic compounds formed in the composite material.


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

2021 ◽  
Vol 63 (9) ◽  
pp. 1583-1589
Author(s):  
D. A. Osipov ◽  
I. V. Smirnov ◽  
K. V. Grinyaev ◽  
I. A. Ditenberg ◽  
M. A. Korchagin

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3560
Author(s):  
Tomasz Skrzekut ◽  
Grzegorz Boczkal ◽  
Adam Zwoliński ◽  
Piotr Noga ◽  
Lucyna Jaworska ◽  
...  

Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C. Fractography analysis of materials at room temperature and 400 °C was carried out. The research took into account the anisotropy of the materials obtained in the extrusion process. For the nonequilibrium SPS process, ZrCu2 and Cu10Zr7 intermetallic compounds formed in the material at sintering temperature. Extruded materials were composed mainly of α-Zr and ZrCu2. The presence of intermetallic compounds affected the reduction in the strength properties of the tested materials. The highest strength value of 205 MPa was obtained for the extruded Zr-2.5Cu, for which the samples were cut in the direction of extrusion. For materials with 10 wt.% copper, more participation of the intermetallic phase was formed, which lowered the mechanical properties of the obtained materials. In addition to brittle intermetallic phases, the materials were characterized by residual porosity, which also reduced the strength properties.


Sign in / Sign up

Export Citation Format

Share Document