scholarly journals Lipidomic Analysis of Cells and Extracellular Vesicles from High- and Low-Metastatic Triple-Negative Breast Cancer

Metabolites ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 67 ◽  
Author(s):  
Nao Nishida-Aoki ◽  
Yoshihiro Izumi ◽  
Hiroaki Takeda ◽  
Masatomo Takahashi ◽  
Takahiro Ochiya ◽  
...  

Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted from almost all cells including cancer. Cancer-derived EVs contribute to cancer progression and malignancy via educating the surrounding normal cells. In breast cancer, epidemiological and experimental observations indicated that lipids are associated with cancer malignancy. However, lipid compositions of breast cancer EVs and their contributions to cancer progression are unexplored. In this study, we performed a widely targeted quantitative lipidomic analysis in cells and EVs derived from high- and low-metastatic triple-negative breast cancer cell lines, using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry. We demonstrated the differential lipid compositions between EVs and cells of their origin, and between high- and low-metastatic cell lines. Further, we demonstrated EVs from highly metastatic breast cancer accumulated unsaturated diacylglycerols (DGs) compared with EVs from lower-metastatic cells, without increasing the amount in cells. The EVs enriched with DGs could activate the protein kinase D signaling pathway in endothelial cells, which can lead to stimulated angiogenesis. Our results indicate that lipids are selectively loaded into breast cancer EVs to support tumor progression.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23058-e23058
Author(s):  
Jae-Hwan Jeong ◽  
Soo Jung Lee ◽  
Jeeyeon Lee ◽  
Jin Hyang Jung ◽  
Ho Yong Park ◽  
...  

e23058 Background: Although Del-1 was recently proposed as a new biomarker for early breast cancer in our previous studies, the mechanisms of Del-1 expression are barely understood. In the current study, we selected two microRNAs (miR-137 and - 496), potentially affecting Del-1 expression in breast cancer and examined their impact on Del-1 expression in a variety of breast cancer cell lines to identify their potential role in Del-1 expression and thereby breast cancer development or progression. . Methods: Del-1 mRNA and miR-137/– 496 levels were measured by qRT-PCR among breast epithelial (MCF10A) and cancer cells (MDA-MB-231, MCF7, SK-BR3 and T-47D). The effects of miR-137/– 496 on cell proliferation and invasion were detected using MTT, wound healing and Transwell assays. Furthermore, luciferase reporter assay was used to identify the direct regulation of Del-1 by miR-137 or – 496 in MDA-MB-231 cells. Plus, we analyzed the expressions of miR-137 or – 496 and Del-1 mRNA from 20 patients with triple negative early breast cancer. Results: miR-137 and – 496 levels were low in all breast cancer cell lines. As Del-1 mRNA expression was remarkably higher in MDA-MB-231 compared to the other breast cancer cell lines, further functional analyses were done with MDA-MB-231 representing triple negative breast cancer subtype. Both miR-137 and miR-496 were revealed to directly bind at the 3’-UTR of Del-1. Del-1 by Luciferase reporter assay and Del-1 expression was upregulated by inhibitors and reversed by both mimics of both miR-137 and miR-496. Furthermore, both miR-137 and miR-496 were also demonstrated to inhibit cell proliferation, migration and invasion of MDA-MB-231, suggesting that these miRNAs affect cancer progression via Del-1. MiR-137 and miR-496 were remarkably down-regulated in 7 out of 12 triple negative breast cancer tissues, in particular with high Ki67 and high histologic grade. Conclusions: Although Del-1 was recently introduced as a new biomarker for triple negative breast cancer, the mechanisms of Del-1 expression were barely identified. The current study firstly demonstrated that microRNA 137 and 496 are involved in Del-1 regulation by binding at Del-1 gene, affecting cancer progression by altering Del-1 expression.


2020 ◽  
Author(s):  
Adriane Feijo Evangelista ◽  
Renato J Oliveira ◽  
Viviane A O Silva ◽  
Rene A D C Vieira ◽  
Rui M Reis ◽  
...  

Abstract Introduction: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. Methods: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex, flow cytometry and transwell assays were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. Results: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. Conclusion: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.


Sign in / Sign up

Export Citation Format

Share Document