scholarly journals Composition of Intracellular and Cell Wall-Bound Phlorotannin Fractions in Fucoid Algae Indicates Specific Functions of These Metabolites Dependent on the Chemical Structure

Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 369
Author(s):  
Claudia Birkemeyer ◽  
Valeriya Lemesheva ◽  
Susan Billig ◽  
Elena Tarakhovskaya

Accumulation of biologically active metabolites is a specific feature of plant biochemistry, directing the use of plants in numerous applications in the pharmaceutical and food industries. Among these substances, the plethora of phenolic compounds has attracted particular interest among researchers. Here, we report on new findings in phlorotannin research, a large group of multifunctional phenolic substances, produced in brown algae. Comprehensive LC-MS profiling of three algal species allowed us to depict the complex pattern of this structurally diverse compound group across different tissues and subcellular compartments. We compiled more than 30 different phlorotannin series in one sample and used accurate mass spectrometry to assign tentative structures to the observed ions based on the confirmed sum formulas. From that, we found that acetylation, hydroxylation, and oxidation are likely to be the most common in vivo modifications to phlorotannins. Using an alternative data mining strategy to cope with extensive coelution and structural isomers, we quantitatively compared the intensity of different phlorotannin series in species, tissues, and subcellular compartments to learn more about their physiological functions. The structure and intra-thallus profiles of cell wall-bound phlorotannins were studied here for the first time. We suggest that one of the major dibenzodioxin-type phlorotannin series may exclusively target integration into the cell wall of fucoid algae.

1995 ◽  
Vol 73 (S1) ◽  
pp. 1092-1099 ◽  
Author(s):  
D. G. Boucias ◽  
I. Mazet ◽  
J. Pendland ◽  
S. Y. Hung

Beauveria bassiana, like other insect mycopathogens, has evolved mechanisms to penetrate the insect exoskeleton via germ tubes and to replicate in the host hemocoel. Our initial studies have shown that biologically active metabolites released in the hemolymph during the vegetative growth phase of B. bassiana disrupt the host immune response and metamorphosis. These components cause an immediate reduction in filopodial-producing hemocytes and an increase in the level of serum phenoloxidase. Radiolabeling of tissues explanted from healthy versus infected larvae has demonstrated both the induction and repression of polypeptides in B. bassiana infected hemolymph. None of the polypeptides detected with 35S pulse labeling were responsible for the cytotoxic and insecticidal activities detected in infected hemolymph. Western blots of SDS gels containing chromatographic fractions from healthy and infected sera probed with both antibodies against B. bassiana cell homogenates and culture filtrates contained a complex of antigens. The results of lectin labeling and sodium periodate treatments suggested that carbohydrates were the major epitopes being recognized by both monoclonal and polyclonal probes. Key words: insect mycopathogen, Beauveria bassiana, fungal metabolites, entomopathogen, Spodoptera exigua.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2018 ◽  
Vol 18 (2) ◽  
pp. 182-194 ◽  
Author(s):  
Aliyu Muhammad ◽  
Mohammed Auwal Ibrahim ◽  
Ochuko Lucky Erukainure ◽  
Ibrahim Malami ◽  
Auwal Adamu

Background: Cancer is a multifaceted metabolic disease that affects sizeable dwellers of rural and urban areas. Among the various types of cancer, mammary cancer is one of the most frequently diagnosed cancers in women. Its menace can be curbed with locally consumed spices due to their multiple bioactive phytochemicals. Aims: This review focuses on the breast cancer chemopreventive and therapeutic potentials of locally consumed spices. Methods/Results: The most commonly consumed spices with breast cancer chemopreventive and chemotherapeutic phytochemical include pepper, onions, ginger, garlic, curry and thyme containing many biologically active metabolites ranging from vitamins, fatty acids esters, polyphenols/phenolics, sulfurcontaining compounds and anthraquinones with proven antioxidant, anti-inflammatory, immuno-modulatory, antitumor and anticancer properties against breast cancer/carcinogenesis. Therefore, extracts and active principles of these spices could be explored in breast cancer chemoprevention and possibly therapeutically which may provide an avenue for reducing the risk and prevalence of breast cancer.


ChemInform ◽  
2009 ◽  
Vol 40 (30) ◽  
Author(s):  
M. P. Sobolevskaya ◽  
V. A. Denisenko ◽  
S. Fotso ◽  
H. Laach ◽  
N. I. Menzorova ◽  
...  

1995 ◽  
Vol 42 (4) ◽  
pp. 735-738 ◽  
Author(s):  
Jingyu Su ◽  
Longmei Zeng ◽  
Yongli Zhong ◽  
Xiong Fu

1995 ◽  
Vol 73 (S1) ◽  
pp. 1265-1274 ◽  
Author(s):  
James B. Gloer

Mechanisms of fungal antagonism and defense often include the production of biologically active metabolites by one species that exert effects on potential competitors and (or) predators. Studies carried out in our laboratory and others clearly indicate that such ecological phenomena can serve as valuable leads to the discovery of novel and potentially useful bioactive fungal metabolites. There is evidence that some of these compounds may render advantages to the producing organism, although careful and definitive ecological studies are required to determine this. Nevertheless, the results summarized here demonstrate the broad array of possible benefits that can arise from interdisciplinary studies in this area. This paper focuses primarily on our own investigations of the chemistry involved in fungal antagonism and defense using coprophilous and sclerotial fungi as model systems. These results have potential implications in many areas of study, including fungal ecology, secondary metabolism, chemotaxonomy, organic chemistry, structure determination, antifungal chemotherapy, and insect control. Key words: fungi, antifungal, insecticide, antagonism, chemical defense, secondary metabolites.


Sign in / Sign up

Export Citation Format

Share Document