scholarly journals Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla paramamosain)

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 651
Author(s):  
Wen-Feng Li ◽  
Shuang Li ◽  
Jie Liu ◽  
Xiao-Fei Wang ◽  
Hui-Yun Chen ◽  
...  

Pubertal molt is a vital stage in the cultivation of mature female crabs in the aquacultural industry of Scylla paramamosain. Since fasting occurs during molting, which requires a large supply of energy, internal energy reserves are critical. However, the dynamics of energy supply during pubertal molt is not clear. This study focuses on the variations of carbohydrates and lipids in serum during the pubertal molt of S. paramamosain via a metabolomics approach. Eleven lipid or carbohydrate metabolic pathways were significantly influenced postmolt. A remarkable decrease in carbohydrates in serum suggested that free sugars were consumed for energy. A significant decrease in glucose and alpha-d-glucosamine 1-phosphate showed that chitin synthesis exhausted glycogen, resulting in insufficient glucose supply. An increase in l-carnitine and acetylcarnitine, and a significant decrease in 15 fatty acyls and 8 glycerophosphocholines in serum indicated that carnitine shuttle was stimulated, and β-oxidation was upregulated postmolt. In addition, astaxanthin, ponasterone A, and riboflavin in serum were significantly decreased postmolt. Eleven potential metabolite biomarkers were identified for pubertal molt. Taken together, carbohydrates and lipids were possibly major energy reserves in pubertal molt. This study suggests that an increase in carbohydrate and lipid levels in crab feed may alleviate the effects of fasting during molt and improve farm productivity in mature female crabs.

2020 ◽  
Vol 100 ◽  
pp. 427-435 ◽  
Author(s):  
Xin Ren ◽  
Shanmeng Lin ◽  
Tongtong Kong ◽  
Yi Gong ◽  
Hongyu Ma ◽  
...  

2021 ◽  
Vol 120 ◽  
pp. 104050
Author(s):  
Zhanning Xu ◽  
Yujie Wei ◽  
Guizhong Wang ◽  
Haihui Ye

2014 ◽  
Vol 81 (1) ◽  
pp. 175-186 ◽  
Author(s):  
Jing-Ying Lu ◽  
Miao-An Shu ◽  
Bing-Peng Xu ◽  
Guang-Xu Liu ◽  
You-Zhi Ma ◽  
...  

Crustaceana ◽  
2021 ◽  
Vol 94 (7) ◽  
pp. 855-863
Author(s):  
Ming Zhao ◽  
Fengying Zhang ◽  
Wei Wang ◽  
Zhiqiang Liu ◽  
Lingbo Ma

Abstract The mud crab Scylla paramamosain is one of the economically important aquaculture species in China. The larval development of the mud crab is characterized by two significant morphological changes, from the 5th zoea (Z5) to the megalopa (M) stage and from the M to the first juvenile crab (C1) stage. In this study, we found that methyl farnesoate (MF) could prohibit the Z5 to M metamorphosis in a concentration-dependent manner, and that a concentration of 10 μM MF could completely prohibit the Z5 metamorphosis. Farnesoic acid (FA) could also prohibit the Z5 metamorphosis, but its effects seemed to be concentration-independent. In addition, MF could delay rather than prohibit the M to C1 metamorphosis, while FA had no effect on the M to C1 metamorphosis at all. To summarize, it is hypothesized that either absence of MF and FA, or at least very low levels of these substances, might be necessary for a successful Z5 to M metamorphosis.


2019 ◽  
Vol 84 ◽  
pp. 733-743 ◽  
Author(s):  
Zhi-qiang Du ◽  
Yue Wang ◽  
Hong-yu Ma ◽  
Xiu-li Shen ◽  
Kai Wang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.


Sign in / Sign up

Export Citation Format

Share Document