scholarly journals Design, Fabrication and Experiment of Double U-Beam MEMS Vibration Ring Gyroscope

Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 186 ◽  
Author(s):  
Huiliang Cao ◽  
Yu Liu ◽  
Zhiwei Kou ◽  
Yingjie Zhang ◽  
Xingling Shao ◽  
...  

This study presents a new microelectromechanical system, a vibration ring gyroscope with a double U-beam (DUVRG), which was designed using a combination of mathematical analysis and the finite element method. First, a ring vibration resonator with eight double U-beam structures was developed, and 24 capacitive electrodes were designed for drive and sense according to the advantageous characteristics of a thin-shell vibrating gyroscope. Then, based on the elastic mechanics and thin-shell theory, a mathematical stiffness model of the double U-beam was established. The maximum mode resonant frequency error calculated by the DUVRG stiffness model, finite element analysis (FEA) and experiments was 0.04%. DUVRG structures were manufactured by an efficient fabrication process using silicon-on-glass (SOG) and deep reactive ion etching (DRIE), and the FEA value and theoretical calculation had differences of 5.33% and 5.36% with the measured resonant frequency value, respectively. Finally, the static and dynamic performance of the fabricated DUVRG was tested, and the bias instability and angular random walk were less than 8.86 (°)/h and 0.776 (°)/√h, respectively.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anton Melnikov ◽  
Hermann A. G. Schenk ◽  
Jorge M. Monsalve ◽  
Franziska Wall ◽  
Michael Stolz ◽  
...  

AbstractElectrostatic micromechanical actuators have numerous applications in science and technology. In many applications, they are operated in a narrow frequency range close to resonance and at a drive voltage of low variation. Recently, new applications, such as microelectromechanical systems (MEMS) microspeakers (µSpeakers), have emerged that require operation over a wide frequency and dynamic range. Simulating the dynamic performance under such circumstances is still highly cumbersome. State-of-the-art finite element analysis struggles with pull-in instability and does not deliver the necessary information about unstable equilibrium states accordingly. Convincing lumped-parameter models amenable to direct physical interpretation are missing. This inhibits the indispensable in-depth analysis of the dynamic stability of such systems. In this paper, we take a major step towards mending the situation. By combining the finite element method (FEM) with an arc-length solver, we obtain the full bifurcation diagram for electrostatic actuators based on prismatic Euler-Bernoulli beams. A subsequent modal analysis then shows that within very narrow error margins, it is exclusively the lowest Euler-Bernoulli eigenmode that dominates the beam physics over the entire relevant drive voltage range. An experiment directly recording the deflection profile of a MEMS microbeam is performed and confirms the numerical findings with astonishing precision. This enables modeling the system using a single spatial degree of freedom.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2015 ◽  
Vol 741 ◽  
pp. 223-226
Author(s):  
Hai Bin Li

The performance of automobile drive axle housing structure affects whether the automobile design is successful or not. In this paper, the author built the FEA model of a automobile drive axle housing with shell elements by ANSYS. In order to building the optimization model of the automobile drive axle housing, the author studied the static and dynamic performance of it’s structure based on the model.


2019 ◽  
Vol 86 (s1) ◽  
pp. 57-61 ◽  
Author(s):  
Sonia Bradai ◽  
Slim Naifar ◽  
Olfa Kanoun

AbstractHarvesting energy from ambient vibration sources is challenging due to its low characteristic amplitude and frequencies. In this purpose, this work presents a compact hybrid vibration converter based on electromagnetic and magnetoelectric principles working for a frequency bandwidth and under real vibration source properties. The combination of especially these two principles is mainly due to the fact that both converters can use the same changes of the magnetic field for energy harvesting. The converter was investigated using finite element analysis and validated experimentally. Results have shown that a frequency bandwidth up to 12 Hz with a characteristic resonant frequency at 24 Hz and a power density of 0.11mW/cm3 can be reached.


2014 ◽  
Vol 716-717 ◽  
pp. 1643-1647
Author(s):  
Yu Liang Luan ◽  
Wei Bin Rong ◽  
Li Ning Sun

In order to achieve greater workspace motion, it’s designed a high aspect ratio 3-PPSR flexible parallel robot, driven by a piezoelectric motor, connected by flexible hinges, which has the advantages of simple structure, non singular, seamless, high motion precision. Because of the stiffness of the system directly affecting the motion accuracy, load bearing performance, according to the characteristics of high aspect ratio flexible hinge, It’s established the mathematical model of flexible hinge through finite element method. Using method of integral stiffness, conbined coordination equation with force balance equation, the flexible stiffness model of system is obtained. Finally, through using Ansys, it’s confirmed the validity of the theoretical model by comparing of the theoretical stiffness model results with the finite element analysis of the model results, to provide a reliable guarantee for optimization and analysis of kinematics and dynamics of flexible parallel robot.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Robert M. Panas ◽  
Jonathan B. Hopkins

We present an improved flexure linkage design for removing underconstraint in a double parallelogram (DP) linear flexural mechanism. This new linkage alleviates many of the problems associated with current linkage design solutions such as static and dynamic performance losses and increased footprint. The improvements of the new linkage design will enable wider adoption of underconstraint eliminating (UE) linkages, especially in the design of linear flexural bearings. Comparisons are provided between the new linkage design and existing UE designs over a range of features including footprint, dynamics, and kinematics. A nested linkage design is shown through finite element analysis (FEA) and experimental measurement to work as predicted in selectively eliminating the underconstrained degrees-of-freedom (DOF) in DP linear flexure bearings. The improved bearing shows an 11 × gain in the resonance frequency and 134× gain in static stiffness of the underconstrained DOF, as designed. Analytical expressions are presented for designers to calculate the linear performance of the nested UE linkage (average error < 5%). The concept presented in this paper is extended to an analogous double-nested rotary flexure design.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yinhui Wang ◽  
Yidong Xu ◽  
Zheng Luo ◽  
Haijun Wu ◽  
Liangliang Yan

According to the flexural and torsional characteristics of curved thin-walled box girder with the effect of initial curvature, 7 basic displacements of curved box girder are determined. And then the strain-displacement calculation correlations were established. Under the curvilinear coordinate system, a three-noded curved girder finite element which has 7 degrees of freedom per node for the vibration characteristic and dynamic response analysis of curved box girder is constructed. The shape functions are used as the interpolation functions of variable curvature and variable height to accommodate to the variation of curvature and section height. A MATLAB numerical analysis program has been implemented.


1985 ◽  
Vol 107 (4) ◽  
pp. 375-377 ◽  
Author(s):  
Shen Zhong Han

A sandwich-type plate with metal facings and felt core, fastened by bolts, was studied using both test and finite-element analysis. This type of plate is cheap, light, damping-effective and without pollution; therefore, it is widely used in astronautical engineering. The tests were conducted for different felt thicknesses, bolt numbers, and fastening forces. The results show that the damping depends on friction between the plates and the felt. As compared with an identical stiffness solid plate, the damping of laminated plates can be increased up to 30 times. A mesh with rectangular elements was adopted in the finite-element analysis. In accordance with the slipping mechanism, a rectangular plate clamped on one edge was analyzed with the foregoing elements to determine the resonant frequency and the damping. The difference between the calculated and tested results was within 5 percent for the resonant frequency.


2012 ◽  
Vol 229-231 ◽  
pp. 1688-1692 ◽  
Author(s):  
Yan Fang Guan ◽  
Ming Gang Shen ◽  
Li Li Han

The application of micropump in microanalytical reagent is widely. In this paper a piezoelectric micropump model that looks like a sandwitch has been put forward. The main structures of the micropump include inlet and outlet pipe, silicon substrate pump body, piezoelectric transducer. In order to find the excellent driving performance, the modals and piezoelectric-stress coupling analysis of the piezoelectric transducer has been carried out with finite element analysis methods. The result proves that the optimal working condition of the micropump is the 1st mode. Finally the micropump model has been fabricated with silicon deep reactive ion etching and UV irreversible irradiation. Through experiment the flow rate and pressure of the micropump reach the maximum in first-order modal that is less than 1000 Hz, and this is accord with the modal analysis.


Sign in / Sign up

Export Citation Format

Share Document