scholarly journals Design and Investigation of the High Performance Doping-Less TFET with Ge/Si0.6Ge0.4/Si Heterojunction

Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 424 ◽  
Author(s):  
Tao Han ◽  
Hongxia Liu ◽  
Shupeng Chen ◽  
Shulong Wang ◽  
Wei Li

A high performance doping-less tunneling field effect transistor with Ge/Si0.6Ge0.4/Si heterojunction (H-DLTFET) is proposed in this paper. Compared to the conventional doping-less tunneling field effect transistor (DLTFET), the source and channel regions of H-DLTFET respectively use the germanium and Si0.6Ge0.4 materials to get the steeper energy band, which can also increase the electric field of source/channel tunneling junction. Meanwhile, the double-gate process is used to improve the gate-to-channel control. In addition, the effects of Ge content, electrode work functions, and device structure parameters on the performance of H-DLTFET are researched in detail, and then the above optimal device structure parameters can be obtained. Compared to the DLTFET, the simulation results show that the maximum on-state current, trans-conductance, and output current of H-DLTFET are all increased by one order of magnitude, whereas the off-state current is reduced by two orders of magnitude, so the switching ratio increase by three orders of magnitude. At the same time, the cut-off frequency and gain bandwidth product of H-DLTFET increase from 1.75 GHz and 0.23 GHz to 23.6 GHz and 4.69 GHz, respectively. Therefore, the H-DLTFET is more suitable for the ultra-low power integrated circuits.

RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22803-22807 ◽  
Author(s):  
Pranav Kumar Asthana ◽  
Bahniman Ghosh ◽  
Shiromani Bal Mukund Rahi ◽  
Yogesh Goswami

In this paper we have proposed an optimal design for a hetero-junctionless tunnel field effect transistor using HfO2 as a gate dielectric.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Aryan Afzalian

AbstractUsing accurate dissipative DFT-NEGF atomistic-simulation techniques within the Wannier-Function formalism, we give a fresh look at the possibility of sub-10-nm scaling for high-performance complementary metal oxide semiconductor (CMOS) applications. We show that a combination of good electrostatic control together with high mobility is paramount to meet the stringent roadmap targets. Such requirements typically play against each other at sub-10-nm gate length for MOS transistors made of conventional semiconductor materials like Si, Ge, or III–V and dimensional scaling is expected to end ~12 nm gate-length (pitch of 40 nm). We demonstrate that using alternative 2D channel materials, such as the less-explored HfS2 or ZrS2, high-drive current down to ~6 nm is, however, achievable. We also propose a dynamically doped field-effect transistor concept, that scales better than its MOSFET counterpart. Used in combination with a high-mobility material such as HfS2, it allows for keeping the stringent high-performance CMOS on current and competitive energy-delay performance, when scaling down to virtually 0 nm gate length using a single-gate architecture and an ultra-compact design (pitch of 22 nm). The dynamically doped field-effect transistor further addresses the grand-challenge of doping in ultra-scaled devices and 2D materials in particular.


2021 ◽  
Author(s):  
Dongha Shin ◽  
Hwa Rang Kim ◽  
Byung Hee Hong

Since of its first discovery, graphene has attracted much attention because of the unique electrical transport properties that can be applied to high-performance field-effect transistor (FET). However, mounting chemical functionalities...


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoshi Jin ◽  
Yicheng Wang ◽  
Kailu Ma ◽  
Meile Wu ◽  
Xi Liu ◽  
...  

AbstractA bilateral gate-controlled S/D symmetric and interchangeable bidirectional tunnel field effect transistor (B-TFET) is proposed in this paper, which shows the advantage of bidirectional switching characteristics and compatibility with CMOS integrated circuits compared to the conventional asymmetrical TFET. The effects of the structural parameters, e.g., the doping concentrations of the N+ region and P+ region, length of the N+ region and length of the intrinsic region, on the device performances, e.g., the transfer characteristics, Ion–Ioff ratio and subthreshold swing, and the internal mechanism are discussed and explained in detail.


1988 ◽  
Vol 9 (5) ◽  
pp. 205-207 ◽  
Author(s):  
K.-W. Wang ◽  
C.-L. Cheng ◽  
J. Long ◽  
D. Mitcham

2021 ◽  
Vol 129 (14) ◽  
pp. 145106
Author(s):  
Sameer Kumar Mallik ◽  
Sandhyarani Sahoo ◽  
Mousam Charan Sahu ◽  
Sanjeev K. Gupta ◽  
Saroj Prasad Dash ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document