scholarly journals Design and Parametric Variation Assessment of Dopingless Nanotube Field-Effect Transistor (DL-NT-FET) for High Performance

Silicon ◽  
2021 ◽  
Author(s):  
Jeetendra Singh ◽  
Debapriya Chakraborty ◽  
Naveen Kumar
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Aryan Afzalian

AbstractUsing accurate dissipative DFT-NEGF atomistic-simulation techniques within the Wannier-Function formalism, we give a fresh look at the possibility of sub-10-nm scaling for high-performance complementary metal oxide semiconductor (CMOS) applications. We show that a combination of good electrostatic control together with high mobility is paramount to meet the stringent roadmap targets. Such requirements typically play against each other at sub-10-nm gate length for MOS transistors made of conventional semiconductor materials like Si, Ge, or III–V and dimensional scaling is expected to end ~12 nm gate-length (pitch of 40 nm). We demonstrate that using alternative 2D channel materials, such as the less-explored HfS2 or ZrS2, high-drive current down to ~6 nm is, however, achievable. We also propose a dynamically doped field-effect transistor concept, that scales better than its MOSFET counterpart. Used in combination with a high-mobility material such as HfS2, it allows for keeping the stringent high-performance CMOS on current and competitive energy-delay performance, when scaling down to virtually 0 nm gate length using a single-gate architecture and an ultra-compact design (pitch of 22 nm). The dynamically doped field-effect transistor further addresses the grand-challenge of doping in ultra-scaled devices and 2D materials in particular.


2021 ◽  
Author(s):  
Dongha Shin ◽  
Hwa Rang Kim ◽  
Byung Hee Hong

Since of its first discovery, graphene has attracted much attention because of the unique electrical transport properties that can be applied to high-performance field-effect transistor (FET). However, mounting chemical functionalities...


1988 ◽  
Vol 9 (5) ◽  
pp. 205-207 ◽  
Author(s):  
K.-W. Wang ◽  
C.-L. Cheng ◽  
J. Long ◽  
D. Mitcham

2021 ◽  
Vol 129 (14) ◽  
pp. 145106
Author(s):  
Sameer Kumar Mallik ◽  
Sandhyarani Sahoo ◽  
Mousam Charan Sahu ◽  
Sanjeev K. Gupta ◽  
Saroj Prasad Dash ◽  
...  

2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


D flip-flop is viewed as the most basic memory cell in by far most of computerized circuits, which brings it broad usage, particularly under current conditions where high-thickness pipeline innovation is as often as possible utilized in advanced coordinated circuits and flip-flop modules are key segments. As a constant research center, various sorts of zero flip-flops have been concocted and explored, and the ongoing exploration pattern has gone to rapid low-control execution, which can be come down to low power-defer item. To actualize superior VLSI, picking the most proper D flip-flop has clearly become an incredibly huge part in the structure stream. The quick headway in semiconductor innovation made it practicable to coordinate entire electronic framework on a solitary chip. CMOS innovation is the most doable semiconductor innovation yet it neglects to proceed according to desires past and at 32nm innovation hub because of the short channel impacts. GNRFET is Graphene Nano Ribbon Field Effect Transistor, it is seen that GNRFET is a promising substitute for low force application for its better grasp over the channel. In this paper, an audit on Dynamic Flip Flop and GNRFET is introduced. The power is improved in the proposed circuit for the D flip flop TSPC.


2020 ◽  
Vol 1 (2) ◽  
pp. 14-21
Author(s):  
Chaw Su Nandar Hlaing Chaw ◽  
Thiri Nwe

This paper presents the band gap design and J-V characteristic curve of Zinc Oxide (ZnO) based on Junction Field Effect Transistor (JFET). The physical properties for analysis of semiconductor field effect transistor play a vital role in semiconductor measurements to obtain the high-performance devices. The main objective of this research is to design and analyse the band diagram design of semiconductor materials which are used for high performance junction field effect transistor. In this paper, the fundamental theory of semiconductors, the electrical properties analysis and bandgap design of materials for junction field effect transistor are described. Firstly, the energy bandgaps are performed based on the existing mathematical equations and the required parameters depending on the specified semiconductor material. Secondly, the J-V characteristic curves of semiconductor material are discussed in this paper. In order to achieve the current-voltage characteristic for specific junction field effect transistor, numerical values of each parameter which are included in analysis are defined and then these resultant values are predicted for the performance of junction field effect transistors. The computerized analyses have also mentioned in this paper.


Sign in / Sign up

Export Citation Format

Share Document