scholarly journals A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism

Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 639 ◽  
Author(s):  
Manjuan Huang ◽  
Cheng Hou ◽  
Yunfei Li ◽  
Huicong Liu ◽  
Fengxia Wang ◽  
...  

This paper proposes an impact-based micro piezoelectric energy harvesting system (PEHS) working with the frequency up-conversion mechanism. The PEHS consists of a high-frequency straight piezoelectric cantilever (SPC), a low-frequency S-shaped stainless-steel cantilever (SSC), and supporting frames. During the vibration, the frequency up-conversion behavior is realized through the impact between the bottom low-frequency cantilever and the top high-frequency cantilever. The SPC used in the system is fabricated using a new micro electromechanical system (MEMS) fabrication process for a piezoelectric thick film on silicon substrate. The output performances of the single SPC and the PEHS under different excitation accelerations are tested. In the experiment, the normalized power density of the PEHS is 0.216 μW·g−1·Hz−1·cm−3 at 0.3 g acceleration, which is 34 times higher than that of the SPC at the same acceleration level of 0.3 g. The PEHS can improve the output power under the low frequency and low acceleration scenario.

2018 ◽  
Vol 5 (3-4) ◽  
pp. 53-65 ◽  
Author(s):  
Dinesh R. Palikhel ◽  
Tyrus A. McCarty ◽  
Jagdish P. Sharma

Abstract Vibrational energy from intermodal transport system can be recovered through the application of piezoelectric energy harvesting system. The intermodal vibration sources are passenger cars and freight trucks moving on streets and highways, trains moving on railway tracks and planes moving on airport runways. However, the primary limiting factor of the application of the piezoelectric energy harvesting system has been the insignificant power output for power storage or to directly power electrical device. A special nano-mixture coating is developed to enhance the energy harvesting capability of the conventional piezoelectric material. This research investigates the impact of the nano-mixture coating on the power output. The experimental results of the nano-mixture coated system show substantial and explicit improvement on the power output. Alternative geometrical designs, trapezoidal and triangular are explored in anticipation for improved power output. But the rectangular energy harvester demonstrates better power harvesting capability. The results presented in this paper show the potential of the nano-mixture coating in power harvesting from intermodal transport system.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB03 ◽  
Author(s):  
Hyun Jun Jung ◽  
Daniel Song ◽  
Seong Kwang Hong ◽  
Yooseob Song ◽  
Tae Hyun Sung

2008 ◽  
Vol 20 (5) ◽  
pp. 625-632 ◽  
Author(s):  
Yonas Tadesse ◽  
Shujun Zhang ◽  
Shashank Priya

In this study, we report a multimodal energy harvesting device that combines electromagnetic and piezoelectric energy harvesting mechanism. The device consists of piezoelectric crystals bonded to a cantilever beam. The tip of the cantilever beam has an attached permanent magnet which, oscillates within a stationary coil fixed to the top of the package. The permanent magnet serves two purpose (i) acts as a tip mass for the cantilever beam and lowers the resonance frequency, and (ii) acts as a core which oscillates between the inductive coils resulting in electric current generation through Faraday's effect. Thus, this design combines the energy harvesting from two different mechanisms, piezoelectric and electromagnetic, on the same platform. The prototype system was optimized using the finite element software, ANSYS, to find the resonance frequency and stress distribution. The power generated from the fabricated prototype was found to be 0.25 W using the electromagnetic mechanism and 0.25 mW using the piezoelectric mechanism at 35 g acceleration and 20 Hz frequency.


Actuators ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Tao Li ◽  
Pooi Lee

A piezoelectric energy harvester was developed in this paper. It is actuated by the vibration leakage from the nodal position of a high-power ultrasonic cutting transducer. The harvester was excited at a low displacement amplitude (0.73 µmpp). However, its operation frequency is quite high and reaches the ultrasonic range (24.4 kHz). Compared with another low frequency harvester (66 Hz), both theoretical and experimental results proved that the advantages of this high frequency harvester include (i) high current generation capability (up to 20 mApp compared to 1.3 mApp of the 66 Hz transducer) and (ii) low impedance matching resistance (500 Ω in contrast to 50 kΩ of the 66 Hz transducer). This energy harvester can be applied either in sensing, or vibration controlling, or simply energy harvesting in a high-power ultrasonic system.


2014 ◽  
Vol 976 ◽  
pp. 159-163 ◽  
Author(s):  
Roberto Ambrosio ◽  
Hector Gonzalez ◽  
Mario Moreno ◽  
Alfonso Torres ◽  
Rafael Martinez ◽  
...  

In this work is presented a study of a piezoelectric energy harvesting device used for low power consumption applications operating at relative low frequency. The structure consists of a cantilever beam made by Lead Zirconate Titanate (PZT) layer with two gold electrodes for electrical contacts. The piezoelectric material was selected taking into account its high coupling coefficients. Different structures were analyzed with variations in its dimensions and shape of the cantilever. The devices were designed to operate at the resonance frequency to get maximum electrical power output. The structures were simulated using finite element (FE) software. The analysis of the harvesting devices was performed in order to investigate the influence of the geometric parameters on the output power and the natural frequency. To validate the simulation results, an experiment with a PZT cantilever with brass substrate was carried out. The experimental data was found to be very close to simulation data. The results indicate that large structures, in the order of millimeters, are the ideal for piezoelectric energy harvesting devices providing a maximum output power in the range of mW


Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document