scholarly journals Direct Patterning and Spontaneous Self-Assembly of Graphene Oxide via Electrohydrodynamic Jet Printing for Energy Storage and Sensing

Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 13 ◽  
Author(s):  
Bin Zhang ◽  
Jaehyun Lee ◽  
Mincheol Kim ◽  
Naeeung Lee ◽  
Hyungdong Lee ◽  
...  

The macroscopic assembly of two-dimensional materials into a laminar structure has received considerable attention because it improves both the mechanical and chemical properties of the original materials. However, conventional manufacturing methods have certain limitations in that they require a high temperature process, use toxic solvents, and are considerably time consuming. Here, we present a new system for the self-assembly of layer-by-layer (LBL) graphene oxide (GO) via an electrohydrodynamic (EHD) jet printing technique. During printing, the orientation of GO flakes can be controlled by the velocity distribution of liquid jet and electric field-induced alignment spontaneously. Closely-packed GO patterns with an ordered laminar structure can be rapidly realized using an interfacial assembly process on the substrates. The surface roughness and electrical conductivity of the LBL structure were significantly improved compared with conventional dispensing methods. We further applied this technique to fabricate a reduced graphene oxide (r-GO)-based supercapacitor and a three-dimensional (3D) metallic grid hybrid ammonia sensor. We present the EHD-assisted assembly of laminar r-GO structures as a new platform for preparing high-performance energy storage devices and sensors.

2017 ◽  
Vol 5 (32) ◽  
pp. 16865-16872 ◽  
Author(s):  
Dongbo Yu ◽  
Liang Ge ◽  
Xinlai Wei ◽  
Bin Wu ◽  
Jin Ran ◽  
...  

A promising strategy is demonstrated for the syntheses of metal organic framework/graphene oxide hybrid films with highly ordered layer-by-layer architecture, and the derived hybrids exhibit remarkable energy storage performances.


2018 ◽  
Vol 18 (12) ◽  
pp. 8352-8359 ◽  
Author(s):  
Xibin Liu ◽  
Gaohua liao ◽  
Xiang Qi ◽  
Xiaoan Mei ◽  
Jifei Wang ◽  
...  

Hybrid fibers based on MnO2/reduced graphene oxide have been fabricated for flexible energy storage devices. Graphene oxide nanoflakes were reduced in a polytetrafluoroethylene (PTFE) pipeline under the appropriate condition to develop a fiber current collector, which also provides the possibility of weaving. The RGO fiber with the radius of about 35 μm has a resistance of 150 Ω · cm. MnO2 nanoflakes directly grow on the RGO fiber surface acting as the electrode material of the device. The MnO2/RGO hybrid fibers provide excellent energy storage performances. The as-fabricated SC exhibits a high areal capacitance of 1.37 F·cm−2 at the scan rate of 1 mV·s−1, and outstanding long-term cycling stability of 93.75% retention after 5000 cycles. This work demonstrates a cost-effective and versatile strategy for wearable energy storage devices.


Nano Research ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 2836-2846 ◽  
Author(s):  
Mengping Li ◽  
Maher F. El-Kady ◽  
Jee Y. Hwang ◽  
Matthew D. Kowal ◽  
Kristofer Marsh ◽  
...  

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 81 ◽  
Author(s):  
Heng Wang ◽  
Takeshi Shimizu ◽  
Hirofumi Yoshikawa

An electrochemical cell combining the energy storage characteristics of the chemical redox reaction and a physical capacitor effect presents advantages including high energy and power densities, and long durability. In this study, we prepared nanohybrid materials between polyoxometalate (POM) and porous carbon, which have different porous structures and pore sizes, using different zeolitic templates. The POM molecules were loaded inside the porous carbon, and these POM/carbon nanohybrid materials were used as cathode active materials for lithium–ion batteries (LIBs). The performance of these molecular cluster batteries (MCBs) was significantly dependent on the porous carbon. Operando X-ray absorption fine structure (XAFS) and 7Li solid-state nuclear magnetic resonance (NMR) measurements of the POM/carbon-MCBs revealed that three-dimensional porous carbon with high surface areas can improve the performance. The results highlight the remarkable performance of porous carbon with a three-dimensionally-linked pore network structure as an additive for supercapacitors to realise high-performance energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document