scholarly journals Development and Characterization of a Novel Low-Cost Water-Level and Water Quality Monitoring Sensor by Using Enhanced Screen Printing Technology with PEDOT:PSS

Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 474 ◽  
Author(s):  
Bei Wang ◽  
Manuel Baeuscher ◽  
Xiaodong Hu ◽  
Markus Woehrmann ◽  
Katharina Becker ◽  
...  

A novel capacitive sensor for measuring the water-level and monitoring the water quality has been developed in this work by using an enhanced screen printing technology. A commonly used environment-friendly conductive polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) for conductive sensors has a limited conductivity due to its high sheet resistance. A physical treatment performed during the printing process has reduced the sheet resistance of printed PEDOT:PSS on polyethylenterephthalat (PET) substrate from 264.39 Ω/sq to 23.44 Ω/sq. The adhesion bonding force between printed PEDOT:PSS and the substrate PET is increased by using chemical treatment and tested using a newly designed adhesive peeling force test. Using the economical conductive ink PEDOT:PSS with this new physical treatment, our capacitive sensors are cost-efficient and have a sensitivity of up to 1.25 pF/mm.

2019 ◽  
Vol 7 (4) ◽  
pp. 809-818 ◽  
Author(s):  
Bin Tian ◽  
Weijing Yao ◽  
Pan Zeng ◽  
Xuan Li ◽  
Huanjun Wang ◽  
...  

Stretchable and wearable strain sensors based on Ag nanodendrites with high stretchability and sensitivity are fabricated by directly screen-printing technology.


2014 ◽  
Vol 605 ◽  
pp. 55-58
Author(s):  
Helene Debeda ◽  
Riadh Lakhmi ◽  
Valerie Pommier-Budinger ◽  
Claude Lucat

Free-standing electroded piezoelectric PZT thick-lms are straightforward fabricatedthanks to the association of the low-cost screen-printing technology with the sacricial layermethod. Au/PZT/Au bridges are directly attached onto the alumina substrate on top of it theyare processed. In addition, completely released disks are also processed. A study of the behaviourof these components shows the inuence of both the releasing process and the densicationon the piezoelectric properties of the PZT layer. From the electromechanical measurements,electroded PZT cantilevers and disks are promising for actuator, sensor or SHM applications.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3395 ◽  
Author(s):  
Mingjie Liu ◽  
Qi Zhang ◽  
Yulong Zhao ◽  
Yiwei Shao ◽  
Dongliang Zhang

In this paper, we present a fully printed accelerometer with a piezoresistive carbon paste-based strain gauge printed on its surface, which can be manufactured at low cost and with high efficiency. This accelerometer is composed of two parts: a sensor substrate made from high-temperature resin, which is printed by a 3D printer based on stereolithography apparatus (SLA), and a carbon paste-based strain gauge fabricated by screen-printing technology and by direct ink writing (DIW) technology for the purposes of comparison and optimization. First, the structural design, theoretical analysis, simulation analysis of the accelerometer, and analyses of the conductive mechanism and the piezoresistive mechanism of the carbon paste-based strain gauge were carried out. Then the proposed accelerometer was fabricated by a combination of different printing technologies and the curing conditions of the carbon paste were investigated. After that, the accelerometers with the screen-printed strain gauge and DIW strain gauge were characterized. The results show that the printing precision of the screen-printing process on the sensor substrate is higher than the DIW process, and both accelerometers can perform acceleration measurement. Also, this kind of accelerometer can be used in the field of measuring body motion. All these findings prove that 3D printing technology is a significant method for sensor fabrication and verification.


2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

1999 ◽  
Vol 385 (1-3) ◽  
pp. 451-459 ◽  
Author(s):  
Robert Koncki ◽  
Stanisław Głąb ◽  
Joanna Dziwulska ◽  
Ilaria Palchetti ◽  
Marco Mascini

2012 ◽  
Vol 192 ◽  
pp. 275-279
Author(s):  
Bing Feng Yu

The paper takes self-developed great aqueous inking oil formulated into screen-printing aqueous ceramic ink under glaze color of once firing as the breakthrough point to choose proper decal paper and the best paper structure. It adopts modern screen-printing technology and searches new production process of ceramic decal under glaze color to solve some problems, such as the uselessness of fine lines, the mistakes of the short line, fault ink and color problem during delicate screen-printing and appliqué, and the defects of injury of glaze during appliqué, and to research new and high-grade screen-printing ceramic decal paper under glaze color of once firing.


Author(s):  
Ryan Ganesha Calibra ◽  
Irfan Ardiansah ◽  
Nurpilihan Bafdal

Water quality is very important for plant’s growth and development. Some of the important part of the water qualities are TDS(Total Dissolved Solid), EC(Electrical Conductivity), pH(Acidity). Cultivation inside a greenhouse provides some benefits but also have some deficiency, such as lack of soil nutrition because most plants inside greenhouse uses non soil growing media. To overcome the deficiency, An automated and remote system is needed to ease the controlling of water quality and nutrition feeding to the plant. This study aims to create low-cost greenhouse water quality monitoring that automatically display the real time data on a website. This research is done by using an engineering design methods. This system can be integrated with auto-pot watering system . The result shows that the system can adjust the TDS and pH as programmed, which are TDS= 1000-1200, and pH =5.5-6.5(these are recommended needs for Tomato plant). The TDS sensor in this reseach have the limitation of reading 0~1500ppm.


Sign in / Sign up

Export Citation Format

Share Document