scholarly journals Protein Dielectrophoresis: I. Status of Experiments and an Empirical Theory

Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 533 ◽  
Author(s):  
Ralph Hölzel ◽  
Ronald Pethig

The dielectrophoresis (DEP) data reported in the literature since 1994 for 22 different globular proteins is examined in detail. Apart from three cases, all of the reported protein DEP experiments employed a gradient field factor ∇ E m 2 that is much smaller (in some instances by many orders of magnitude) than the ~4 × 1021 V2/m3 required, according to current DEP theory, to overcome the dispersive forces associated with Brownian motion. This failing results from the macroscopic Clausius–Mossotti (CM) factor being restricted to the range 1.0 > CM > −0.5. Current DEP theory precludes the protein’s permanent dipole moment (rather than the induced moment) from contributing to the DEP force. Based on the magnitude of the β-dispersion exhibited by globular proteins in the frequency range 1 kHz–50 MHz, an empirically derived molecular version of CM is obtained. This factor varies greatly in magnitude from protein to protein (e.g., ~37,000 for carboxypeptidase; ~190 for phospholipase) and when incorporated into the basic expression for the DEP force brings most of the reported protein DEP above the minimum required to overcome dispersive Brownian thermal effects. We believe this empirically-derived finding validates the theories currently being advanced by Matyushov and co-workers.

1977 ◽  
Vol 32 (2) ◽  
pp. 152-155 ◽  
Author(s):  
J. Wiese ◽  
L. Engelbrecht ◽  
H. Dreizler

Results of a microwave investigation of the molecules 2-Cyanothiophene and 2-Cyanofurane are reported. The microwave spectrum of 2-Cyanothiophene was examined in the frequency range of 13 -40 GHz mainly to get a more accurate rotational constant A from the assignment of μb-btransitions. From the resolved hyperfine structure due to nuclear quadrupole coupling of the 14N-nucleus the quadrupole coupling constant X+=Xbb + Xcc was determined for 2-Cyanothiophene. No information for X- was available from the measured transitions.From Stark effect studies the dipole moments were determined for both molecules. The nuclear quadrupole coupling as a perturbation of the second order Stark effect was included in the Stark effect analysis


1976 ◽  
Vol 31 (3-4) ◽  
pp. 374-380 ◽  
Author(s):  
W. U. Stieda ◽  
E. Tiemann ◽  
T. Törring ◽  
J. Hoeft

Abstract The rotational spectra of GeS and GeSe were measured in the frequency range of 66 GHz to 110 GHz with high precision. The breakdown of the Born-Oppenheimer approximation was observed for the rotational constant yol. With the known molecular 37-factor and the electric dipole moment the adiabatic part of the Born-Oppenheimer correction can be extracted from the primary observa-tion on y01. The adiabatic correction is very similar in both molecules but differs from the results in the earlier measurements on PbS.


1965 ◽  
Vol 20 (12) ◽  
pp. 1676-1681 ◽  
Author(s):  
D. Sutter ◽  
H. Dreizler ◽  
H. D. Rudolph

The microwave spectra of CD3 —S —S —CD3 and CH3 —S —S—CH3 have been measured in the frequency range from 5.5 to 34 kmc/sec. From the six rotational constants an r0-structure has been calculated. STARK-effect measurements have been made for the 101 —110 and 202—211 rotational transitions of CH3—S—S—CH3. The dipole moment was calculated to be (1.985±0.01) Debye. An approximate value for the barrier to internal rotation of the two methyl tops is given, V3= (1.6±0.1) kcal. The calculation has been based on triplet splittings of the rotational lines using second order perturbation theory in the torsional wavefunctions and neglecting first order and cross terms in angular momentum.


1991 ◽  
Vol 176 (3-4) ◽  
pp. 303-308 ◽  
Author(s):  
Benoit Simard ◽  
Michael Vasseur ◽  
Peter A. Hackett

1981 ◽  
Vol 36 (8) ◽  
pp. 868-875 ◽  
Author(s):  
Wolfram Baumann

Abstract The effect of an external electric field on the absorption and the double fluorescence of 4-cyano-N,N-dimethylaniline can be understood, taking into account reaction field induced polarizability effects. If a TICT state conformation emits the a-fiuorescence in dioxane, the permanent dipole moment in this state is only slightly larger than in the equilibrium ground state.


1987 ◽  
Vol 42 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Eckhard Fliege ◽  
Helmut Dreizler

The Stark shift of the J'K′_K′+ - J″K_K″+ = 101 - 000 transition of benzene-d1 was investigated to determine the dipole moment caused by deuterium substitution. A modified set-up of the microwave Fourier transform spectrometer was used to be able to apply the necessary Stark voltage and to increase the sensitivity of the instrument. The resulting permanent dipole moment is μa = 0.00810(28) D corresponding to an absorption coefficient of ymax = 2.8 • 10-12 cm-1 , determined at a sample pressure of 1.5 mTorr, for that line.


Biopolymers ◽  
1990 ◽  
Vol 29 (8-9) ◽  
pp. 1137-1146 ◽  
Author(s):  
G. Eric Plum ◽  
Victor A. Bloomfield

Sign in / Sign up

Export Citation Format

Share Document